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1 Introduction

The question whether every tree can be gracefully labeled (The Ringel-Kotzig Con-
jecture) is one of the most famous problems in discrete mathematics. Over the last
fifty years more than a thousand papers have been devoted to this problem. Our
work aims at contributing to the problem by giving a ’chessboard’ reformulation of
the problem and its applications, and by producing computer programs for finding

graceful labelings of small trees.

The chessboard representation gives a nice visualisation of a gracefully labeled
tree. As its applications, we give the Sheppard’s result [14] on the number of grace-
fully labeled graphs with g edges, and the fact that finding a graceful labeling of a
tree G means transfering its assigned G-chessboard to a graceful G-chessboard via

so-called elementary chessboard operations (Section 3).

In Sections 4-6 we describe three computer programs that we developed for find-
ing graceful labelings of trees. The program COUNT calculates the number of all
nonisomorphic trees with n vertices for small n, and gives one graceful labeling for
each of them via its chessboard representation. The program FIND calculates and
lists all graceful labelings of a given tree. And the program TRY is a useful tool for
finding a graceful labeling of a given tree manually. The programs are programmed
in Borland Delphi 6 (which is based on Pascal) and are attached on DVD.

2 Preliminaries

The following basic concepts are taken from [3].

2.1 Graphs

Definition 2.1 A graph G is a triple consisting of a vertex set V(G), an edge set
E(G), and a function hg that assigns to each edge e € E(G) an unordered pair of
vertices. When hg(e) = {u,v}, we say that u and v are the endpoints of e and that
e is incident to u and v. A graph is simple if the function hg(e) is injective. In this

case, we write e = uv instead of hg(e) = {u,v}.

The terms ’vertex’ and ’edge’ come from geometry. We can visualize graphs by

drawing them in the plane. To each vertex we assign a point; to each edge we assign



a curve that joins the points assigned to its vertices.

Definition 2.2 The degree d(x) of a vertex x € V(G) is the number of edges in G

incident to x.

Definition 2.3 A trail (of length k) in a graph G is a list vy, ey, v1,€9,..., €k, Vg
that alternates between vertices and edges, such that hg(e;) = vi—1v; for all i and

el,...,ex are distinct elements of E(QG).

2.2 Isomorphism of Graphs

Definition 2.4 An isomorphism from a simple graph G to a simple graph H is a
bijection f: V(G) — V(H) such that uwv € E(G) iff f(u)f(v) € E(H).

We say "G is isomorphic to H” if there is an isomorphism from G to H. The

set of pairs G, H such that G is isomorphic to H is the isomorphism relation.

Definition 2.5 Vertices u and v in a graph G are adjacent if they are the endpoints
of an edge. The adjacency relation of G (defined on V (G)) is the set of ordered pairs

(u,v) such that u and v are adjacent.

The adjacency relation is symmetric. In the language of adjacency, simple graphs
G and H are isomorphic iff there is a bijection f : V(G) — V(H) that preserves the
adjacency relation. The isomorphism relation is an equivalence relation on the set

of simple graphs.

2.3 Connection and Trees

Now we confine our attention to simple graphs, viewing the edge set of a graph as a
set of unordered pairs of vertices, since a simple graph has (at most) one edge with

specified endpoints v;_1 and v;. We consider special types of trails.

Definition 2.6 A path is a trail with no repeated vertex. A u,v-path is a path with
endpoints u and v. A cycle is a closed trail in which ”first = last” is the only vertex

repetition.

Definition 2.7 A graph G is connected if for every pair u,v € V(G), there is a
u, v-path in G.

Definition 2.8 A tree is a connected graph with no cycles. A leaf is a verter of

degree 1.



Lemma 2.9 ([3]; Lemma 11.39) Every tree with at least two vertices has a leaf, and

deleting a leaf from a tree yields a tree with one less verter.

Theorem 2.10 ([3]; Theorem 11.40) Every tree with n vertices has n — 1 edges.

2.4 Graceful Labeling

The following preliminary facts about graceful labeling of a graph are taken from [4].

A graph labeling is an assignment of integers to the vertices or edges, or both,
subject to certain conditions. Graph labelings were first introduced in the late 1960s.

Since then dozens of graph labeling techniques have been studied in over 1000 papers.

Rosa [13] called a function f a [-valuation of a graph G with ¢ edges if f is an
injection from the vertices of G to the set {0,1,...,¢} such that, when each edge
xy is assigned the label |f(x) — f(y)|, the resulting edge labels are distinct. Golomb
[5] subsequently called such labelings graceful. Sheppard [14] has shown that there
are exactly ¢! gracefully labeled graphs with ¢ edges.

The Ringel-Kotzig Conjecture saying that all trees are graceful has been the focus
of many papers. Among the trees known to be graceful are for example: caterpillars
[13] (a caterpillar is a tree with the property that the removal of its endpoints leaves
a path); trees with at most 4 end-vertices [8], [15] and [9]; trees with diameter at
most four [15] and five [7]; trees with at most 27 vertices [1]. In 1979 Bermond [2]
conjectured that lobsters are graceful (a lobster is a tree with the property that the
removal of the endpoints leaves a caterpillar). Mishra and Panigrahi [11] and [12]

found classes of graceful lobsters of diameter at least five.

Despite the efforts of many, the graceful tree conjecture remains open. It remains
open even for trees with maximum degree 3. In a paper published in 2004 Krishnaa
[10] claims to have proved that all trees have graceful labeling. However, her proof

was flawed.

3 Chessboard Representation

The idea of representing gracefully labeled graphs via chessboards is due to M.
Haviar [6].



3.1 Chessboard Representation of a Labeled Graph

In what follows, G will be a labeled simple graph without isolated vertices. With-
out lost of generality we can assume that its vertices are labeled with distinct
numbers from the set {1,2,...,n}. As the graph is simple, its edge set is a set
of unordered pairs of vertices. So let E(G) = {va, Vb, VayUbys - - - s Va,, Ub,, }>» Where
Va;, Vb, € {1,2,...,n} for every 1 < i < m. We shall only consider the labeling of

edges given by [(vg,vp,) = |vq; — vp,| for every edge vq,vp, of G.

Now consider a table with n rows and n columns. Let the square with coordinate
[i, 7] of the table means the square in the i-th column counting from the left and
the j-th row counting from the top. Let the r-th diagonal be the set of all squares
with coordinates [i, j] where |i — j| = r and ¢ < j. The 0-th diagonal will sometimes
be called the main diagonal and the other r-th diagonals with r # 0 will be called

associate diagonals.

We assign a table B to each finite labeled graph G as follows: for every edge
Vg, 0, € E(G) we draw a dot in the pair of squares with the coordinates [vg,, vp,| and
[Ub,, Vg;]. Denote this dots dvai,vbi and dvb“vai, respectively. We obtain a table with
2m dots, where m = |E(G)|. We shall call this table a G-chessboard and denote it
by B (see Figure 1) or simply B, if the considered graph G is clear from the context.
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Figure 1: Graph G and its corresponding G-chessboard B7G



Clearly, the G-chessboards we consider are symmetric by the main diagonal.

3.2 Chessboard Representation of a Gracefully Labeled Graph and
Sheppard’s Result

Let G be a simple graph with vertices labeled with selected distinct numbers from the
set {1,2,...,n}, with ¢ = n — 1 edges, and whenever two vertices x, y are endpoints
of an edge e, then the label of the edge e is l(e) = |z — y|. Notice that if a graph G
is graceful, then the labels of its edges are distinct numbers 1, ..., ¢, and thus there
is exactly one dot on every associate diagonal of the assigned G-chessboard BS. Let
us call such G-chessboard graceful. For example, the G-chessboard assigned to the

gracefully labeled complete graph G = K in Figure 2 is graceful.
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Figure 2: Graph K4 and its corresponding graceful G-chessboard Bf“

Let n be a natural number, n > 0. Let £,, be the set of all gracefully labeled sim-
ple graphs G with ¢ = n — 1 edges and vertices labeled with selected numbers from
the set {1,2,...,n}. Let B,, be the set of all assigned graceful G-chessboards. We
define a map f : £, — B, which maps each gracefully labeled graph to its assigned
graceful chessboard. Clearly, for every G € £, there is a unique assigned chessboard
BY € B, as defined in Section 3.1. Also, for every graceful chessboard B, € B,
one can assign a unique graceful graph G € £, such that B, = BS. Consequently,
the map f : £, — B, is a bijection.



Hence, to calculate |L£,|, it suffices to calculate |B,|. For every B,, € B, there
is exactly one dot on every associate diagonal. There are exactly ¢ possibilities one
can place the dot on the associate diagonal consisting of i squares, 1 < ¢ <n — 1.
Thus, there are exactly 1-2---(n — 1) = (n — 1)! different graceful G-chessboards
By, with this property. So |B,| = [£,| = (n —1)! = ¢!. We have shown the following
result due to Sheppard [14]:

Theorem 3.1 There are exactly q! gracefully labeled graphs with q edges.

3.3 Chessboard Representation of a Gracefully Labeled Tree

We showed that all graceful G-chessboards correspond to gracefully labeled graphs.
Now we will add other conditions to a G-chessboard, in order for the corresponding

graph to be a tree.

By the definition, a tree is a connected graph with no cycles. It is possible to
decide whether a graph is a tree or not when we see the diagram of the graph. To
decide whether a G-chessboard represents a tree, we will need some extra conditions.
In our further considerations, it will be more convenient to use another characteri-
zation of a tree, namely that a graph with n vertices is a tree iff it is connected and

has n — 1 edges.

We say that two dots d; ; and d,,, in a G-chessboard are ‘connectable’ if there
is a sequence d; ; = d;y jo, iy jyr---5d
ik,jmd
from one dot to the other within the same column or row. Further, we say that two

= dy, of dots such that for any two

Tm>Jm

consecutive dots d ini1nes €ither ig = igy 1 or jr = jry1, ie., one can ‘jump’

vertices 1 and j are ‘comnectable’ if there are dots in the ¢-th and the j-th columns
of the G-chessboard that are connectable (instead of the columns we can consider

rows here as the G-chessboards are symmetric).

Let G be a labeled graph with n vertices 1,2,...,n and let BS be its correspond-
ing G-chessboard. Then G is a tree iff the following conditions hold:

(1) BY has in total (n — 1) dots in the associate diagonals and

(2) the vertices ¢ and (i + 1) are connectable for every 1 <i < (n —1).

The first condition corresponds to the fact that the graph G has (n — 1) edges.

The second condition corresponds to the fact that there is a path between any two



vertices in the graph, so the graph is connected; it explicitly says, that there must

be a dot in every column (row) of the G-chessboard.

If we asssume there exists a graceful labeling for every n-element tree, then ob-
viously we are able to find it from an arbitrary starting labeling of the vertices with
the numbers 1,2,...,n by a finite sequence of permutations (ij). However, it is not

clear how to do it efficiently.

By an elementary chessboard operation (ECO) we shall mean a mutual replace-
ment of the i-th and j-th columns (i # j) of the G-chessboard followed by the mutual
replacement of the i-th and j-th rows of the chessboard. We will then denote it as
ECO(4,7). In the assigned graph it corresponds exactly to the permutation (ij) of
the vertices. We shall say that two G-chessboards assigned to n-element trees are
equivalent if there is a finite sequence of ECOs transferring one chessboard to the

other. It is easy to see that the following statement is true:

Theorem 3.2 Two labeled trees are isomorphic iff their assigned G-chessboards are

equivalent.

Hence, as the second application of our chessboard representation of gracefully
labeled graphs we present the fact that to find a graceful labeling of a given tree
G means to find a sequence of ECOs for transfering a G-chessboard to a graceful
G-chessboard.

4 Description of Program COUNT

COUNT (Figure 3) is a computer program for counting nonisomorphic trees of a
given number of vertices n. After the calculations its result is a number of all
nonisomorphic trees with n vertices. In addition, the program creates a text file ta-
bles(n).txt” with chessboards of all nonisomorphic n-element trees using chessboard
representation (Figure 4). Following every chessboard is a list of all edges of the
tree. Although it can be easily read from the chessboard, it is there as an input to

be easily used for other programs, for example for the program TRY.

For each of all nonisomorphic trees found, the program always saves in the text

file the chessboard representation of the first graceful labeling found for the given
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Figure 3: Program COUNT

TABLES OF ALL NONISOMORPHIC TREES WITH ©& VERTICES

TREE NO. 1: EDGES TREE NO. 2: EDGES TREE NO. 3: EDGES
1='A"A"A"A"A' 12 1= R R 13 1= L AR-E R 14
21*|= 13 2| |=I* 14 2| I=I*1* 1 5
E = 14 Fl*|*|= o 3 *|= 16
4|* = 1. 5 4|* = 16 4]*[*] [= 3 3
] s = 16 T s = 2 3 ] = 24
6] = 6] = 6|* =
123456 123456 123456

TREE NO. 4: EDGES TREE NO. 5: EDGES TREE NO. 6: EDGES
1|= #e|®] 1 4 L]=]. 1=]. |=1=]:1 3 1|= #|®*] 1 5
2 = = o 2 = = o Fal 2 = =l 16
3 =|* 16 3|* =|* 16 3 =|* 2 4
A|*|*]|*]|= 24 4 ®|= 25 4] |*]*]|= 25
al* = 3 4 T ol o = 3 4 T e = 34
6]* = 6]* = 6|* =
123456 123456 123456
Number of nonisomorphic trees with 6 vertices is 6.

Figure 4: Chessboards and edge lists from the output file "tables(6).txt’

tree (see again Figure 4). So there is no need to check the existence of graceful

labelings of trees with a given number of vertices by some other program.

The algorithm of program COUNT is very simple. It generates all possible trees
with given number of vertices. After each new graph is generated, the algorithm
checks all saved graphs so far, and if none of the saved graphs in the database is
isomorphic to this new graph, then the new graph is added to database. The set
of all trees with given number of vertices is of course finite, so the algorithm will
get all nonisomorphic trees after finite number of steps. Even though it works with

graphs with more than a dozen vertices, in such cases the time to compute can be



(especially on slower computers) very long.

Generating of all trees with given number of vertices uses chessboard characteri-
zation. At first it generates gracefully labeled graphs. After that, it checks whether
a gracefully labeled graph is a tree or not (using the two conditions from the Section
3.3). If it is a tree, then it has to be compared to the other trees in the database. By
2.4, two trees G and H are isomorphic if there is a bijection f : V(G) — V(H) such
that uv € E(G) iff f(u)f(v) € E(H). This is a sufficient condition, but for computer
program it is more convenient to employ also one condition for necessity, which says
that if two trees are isomorphic, then the isomorphism maps each vertex to a vertex
of the same degree. So if, for example, the vertices of a tree have degrees 1,1,1,3
and the vertices of another tree have degrees 1,1,2,2, the trees cannot be isomorphic.
Using this condition in our program shortens the time needed for checking whether

two trees are isomorphic.

5 Description of Program FIND

The program FIND (Figure 5) is a program for finding all graceful labelings of a
given graph. As for graphs with more than a dozen vertices the calculation would
take a long time, the program can be set to find only one labeling, which takes a
reasonable time even for "bigger’ graphs (the user ticks the dialog box saying ”Find

only one labeling” - see Figure 5).

First we need to enter the graph of which graceful labelings we want to com-
pute. We label the vertices of our graph with variables z1, x2, ..., z,, where n is the
number of vertices. We can label the vertices arbitrarily, but two different vertices
must be labeled with different variables. The input to the program is the set of
edges simply written like this: if there is an edge zoz7 in the graph, the edge in the
input will be "2 7’ (indexes separated with space). Each edge represented by a pair

of vertices is given on separate line (see the left top part of Figure 5).

The found graceful labelings of trees are represented by sequences of labels of
variables x1,xa, ..., x, in the form (z1)(z2) ... (z,), where (x;) is the label of vari-
able x;, hence the sequences (x1)(z2) ... (x,) are certain permuations of the ordered

n-tuple [1,2,...,n]. These special permutations tell us how to label our graph in
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383: (BISNEINBNEAA211]
384: [ZUSNIBIEN B0
385: [3BEIFIBNENA2]1]
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4 [ |

[ Find only one labeling There are 383 graceful labelings.

Find graceful labelings

Figure 5: Program FIND

order to obtain the graceful labeling. For example, if the permutation in the output
is (4)(7)(8)(9)(6)(5)(3)(2)(1) (see the last permutation in Figure 5), we label the

vertex x1 with 4, the vertex xzo with 7, etc.

Even though the results written as permutations are listed directly in the pro-
gram window, the program FIND also creates a text file 'tables.txt’ with all the
results. In addition, to each permutation representing a graceful labeling, it creates
a table with its chessboard representation. Note that two different labelings can

have the same chessboard (see Figure 6).

The program uses its own implemented algorithm for generating permutations.

It generates all permutations of the set {1,2,...,n}, where n is the number of ver-
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Figure 6: Different labelings of a tree with identical chessboards

tices of a given graph. Then every permutation is checked whether it gives a graceful
labeling or not. If the answer is positive, then the permutation is added to the pro-

gram output and along with the chessboard, it is saved into the file *tables.txt’.

6 Description of Program TRY

The program TRY (Figure 7) is more complex than the previous ones. It is a useful
tool for finding a graceful labeling of some given graph manually. The input is the

same as in program FIND, the user enters the edges of a graph in the same way.

After the graph input in entered, the program draws the graph (see Figure 7) and
user is able to fill in numbers in the small squares representing the graph vertices.
After pressing ENTER button, the program checks whether there are no conflicts
(a conflict arises if two vertices have the same number or there is a filled in number
greater than the number of vertices of the graph). Then the program labels with
[(uv) = |u — v| all edges wv which have the numbers u and v already filled in. The
program displays the value [(uv) of the edge uv in the graph diagram: in green if the
value [(uv) is unique in the diagram of the graph and in red otherwise. Of course

we can fill in the vertex numbers step by step and see if the edge values are distinct.

Also, after pressing ENTER button, the program displays the edges in the chess-
board. Since we know that there must be a dot (representing edge) on every associate
diagonal for a labeling to be graceful, the chessboard presented in the right bottom
part of the program window (see Figure 7) can help us with deciding how to fill in

the vertex numbers. If we want to make a step back to the position after the previ-
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Recommend a solution

Fill the graph accaording to recommended solution
Show the recommended solution in chessboard

Clear the numbers in graph vertices

Figure 7: Program TRY

ous pressing of ENTER button, there is such a possibility, the program remembers

its steps.

There is also a possibility to get a hint from the program. After pressing the
button ”Find and recommend a solution”, program finds a solution using the same
algorithm as in program FIND. In addition, if the number of graph vertices does not
exceed ten, the program chooses the most convenient solution, particularly the one
which is the ’closest’ to the actual filling of the graph (so that we have to change
as less vertex numbers as possible). For bigger graphs it only finds one solution,
because for all solutions it would need long time. When the program recommends a
solution, there is also a possibility to show the recommended solution in the chess-

board (even before we actually fill in the vertex numbers in the graph diagram).

Another feature of the program is removing the leaves. The button to do this
can be used repeatedly until there is only one vertex or one edge left. The algorithm
of doing this is following. The program calculates the degrees of every vertex (as a
number of edges which connect this vertex to other vertices). Whenever the degree

12



of a vertex is 1 (i.e., it is a leaf), after pressing the button ”Remove leaves” the
program will not display this vertex anymore and neither it will display the edge
which is connecting this leaf with the rest of the graph. In addition, it also displays
the chessboard representation of such modified graph, so that we can see which dots

are disappearing after disposal of leaves.

7 Conclusion

Our work is a small contribution to the famous problem of graceful labelings of trees.
We introduced the chessboard representation of a labeled graph and presented some
of its applications. More precisely, we gave the Sheppard’s result [14] on the num-
ber of gracefully labeled graphs with ¢ edges and we showed that finding a graceful
labeling of a tree G means transfering its assigned G-chessboard to a graceful G-

chessboard via elementary chessboard operations.

We described three computer programs that we developed as useful tools for
finding graceful labelings of trees. The program COUNT calculates the number of
all nonisomorphic trees with n vertices for small n, and gives one graceful labeling
for each of them via its chessboard representation. The program FIND calculates
and lists all graceful labelings of a given tree. The program TRY is a tool for finding
a graceful labeling of a given tree manually. The programs were programmed in
Borland Delphi 6 and are attached on DVD.
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