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Introduction

As the title says, this work deals with apllications of the Atiyah-Singer index theorem,
especially in the theory of quaternionic manifolds. The theorem relates analytical prop-
erties of compact smooth manifolds to their topological properties via the notion of an
elliptic differential operator or complex and its analytical index. Although defined purely
analytically, this index may be computed from topological data by a formula given by the
Atiyah-Singer index theorem and thus provides global information on the manifold. For
example, the basic elliptic complex on each smooth manifold is the deRham complex and
its analytical index equals the Euler characteristic. Similarly, the easiest elliptic complex
on complex manifolds is the Dolbeault complex whose index is the Todd genus – this
result is also known as the Hirzebruch-Riemann-Roch theorem [15]. An analogue of the
Dolbeault complex for quaternionic manifolds is the Salamon’s complex constructed in
[20]. However, it seems that its index has not been yet computed except for some special
cases of quaternionic Kähler manifolds [16]. Therefore, the first aim of our work was to
compute the analytical index of the Salamon’s complex in full generality.

The Salamon’s complex is just one of many elliptic complexes arising naturally on quater-
nionic manifolds. A class of such complexes was described in [6] ending with some com-
putations of their indices in the hyperkähler case. Recently, a much broader class of
quaternionic complexes was constructed in [12] in the framework of parabolic geometries
and it was shown that many of them are elliptic. Not long after that, a question has been
raised whether one can compute their indices and what information on the manifold we
could obtain. For example, the index formula provides some integrality conditions on the
existence of a quaternionic structure on the manifold. This was our second task.

It has turned out that both these problems may be solved in a uniform way using the
Atiyah-Singer index theorem resulting in a procedure for an explicit calculation of the
indices. To our knowledge, the results obtained by this procedure are new and has not
appeared elsewhere. The aim of this work is first to outline the theory of elliptic complexes
on quaternionic manifolds and then describe the procedure for computing their indices.

The structure of the work is as follows. The first short section introduces the notion of
an elliptic differential operator and an elliptic complex and the analytical index. The aim
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of the second section is to outline the theory of quternionic manifolds and the construction
of the quaternionic complexes in question. The third section describes a method of Borel
and Hirzebruch [8] for computing the Chern classes of complex vector bundles. This is
our main technical tool for the calculations. The fourth section presents the Atiyah-Singer
index theorem for compact oriented manifolds. In the fifth section we will focus on elliptic
complexes which are induced by a G-structure on the manifold. In that case one obtains
a simpler version of the Atiyah-Singer theorem to be used in our procedure. At the end of
this section we will compute the index of the Salamon’s complex for hyperkäler manifolds.
The sixth section deals with quaternionic structures from the topological viewpoint [9].
Finally, in the seventh section we will describe the procedure for computing the indices of
quaternionic complexes and illustrate it on several simple examples. The results obtained
here are completely new.

From the third section onwards we assume some knowledge of characteristic classes for
vector bundles (see for example [14]) and the representation theory of compact Lie groups
(see fo example [1]). Moreover, the reader should be familiar with the notion of a classifying
space of a Lie group.
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1. Differential operators and the analytical index

In this first introductory section we will give definitions of differential operators and
their symbols and also of the analytical index for elliptic complexes, which is the main
object of our interest. It turns out that the index often provides topological information
about the manifold itself, a simple motivation for this is given at the end.

Throughout the section we will use the multiindex notation. A multiindex of dimension
n is an n-tuple α = (α1, α2, . . . , αn) of nonnegative integers. The length |α| of α is the
sum α1 + . . .+ αn. The symbol Dα will stand for the partial derivative ∂|α|/(∂α1 . . . ∂αn).

To define a differential operator we will start with the notion of a jet. Let f, g : M → N
be two smooth maps between smooth manifolds and let x ∈ M . We say that f and g
determine the same jet of order k ∈ N0 at x if in some, and so any, coordinate chart
around x the partial derivatives of f and g coincide up to order k. This is an equivalence
relation on the set of maps f : M → N , the class of a map f is denoted by jk

xf and called
the k-jet of f at x.

We will apply this notion to (local) sections of a complex1 vector bundle p : E →M over
a manifold M . Write Jk

x (E) for the set of k-jets at x ∈ M of sections s ∈ ΓE. Jk
x (E) is a

complex vector space under the operations:

c · jk
xs = jk

x(c · s), jk
xs+ jk

xt = jk
x(s+ t).

It turns out that the disjoint union Jk(E) =
⋃

x∈M Jk
x (E) with the projection jk

xs 7→ x is
a complex vector bundle over M . A local trivialization over a coordinate chart U ⊂ M is
given by the partial derivatives of the sections restricted to U , where we can view them as
functions from U to the standard fibre of E, i.e. jk

xs 7→ (x,Dαs(x), |α| ≤ k). If s ∈ ΓE,
then the assignment x 7→ jk

xs defines a smooth section of Jk(E). The resulting complex
linear operator jk : ΓE → ΓJk(E), s 7→ jks, is called the k-jet prolongation.

Definition 1.1. Let E1, E2 be two complex vector bundles over a smooth manifold M .
A complex linear map D : ΓE1 → ΓE2 is called a differential operator of order k if for all
s ∈ ΓE1 and x ∈M the equality jk

xs = 0 implies Ds(x) = 0.

It follows from the definition that the differential operator D factors uniquely through
Jk(E1). More precisely, for x ∈ M the mapping s 7→ Ds(x) is a linear map ΓE1 → E2

x

and there is a unique linear map D̃x : Jk
x (E1) → E2

x such that Ds(x) = D̃x ◦ jk
x(s). Then

the induced map D̃ : Jk(E1) → E2 is a morphism of vector bundles and Ds(x) = D̃(jk
xs)

for all s ∈ ΓE1 and x ∈M .

Example 1.2. Let E →M be a vector bundle. The k-jet prolongation jk : ΓE → ΓJk(E)
is a differential operator of order k. It is called the universal operator of order k for the
bundle E. This terminology is justified by the preceding paragraph.

Example 1.3. Let U be an open set in Rd. Then each complex vector bundle over U is
of the form E = U × Cm and the space ΓE may be identified with the space C∞(U,Cm)

1We could equally well deal with real vector bundles but because the index theorem is about differential
operators between complex vector bundles, we will restrict to these ones.
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of smooth complex vector valued functions on U . A partial differential operator, in short
a PDO, of order k on U is a linear map D : C∞(U,Cm) → C∞(U,Cn) defined by

Df(y) =
∑
|α|≤k

Aα(y)Dαf(y),

where Aα : U → Hom(Cm,Cn) are smooth maps. If f ∈ C∞(U,Cm), then jk
yf = 0 is

equivalent to vanishing of all the partial derivatives Dαf(y), |α| ≤ k. Hence, a PDO as
above is a differential operator of order k.

A differential operator is a local operator, i.e. if s, t ∈ ΓE1 are such that s = t on some
open set U ⊂M , then Ds = Dt on U . It is thus natural to ask how a differential operator
looks like locally.

Let ϕ : V → U ⊂ Rd be a coordinate chart on M such that E1 and E2 are both trivial
over V . A smooth map f : U → Cm can be viewed then as a local section of E1. This
can be extended to a global section s and by applying the differential operator D we
obtain a linear map DU : C∞(U,Cm) → C∞(U,Cn). For each x ∈ V there is a linear map

D̃x : Jk
x (E1) → E2

x such that Ds(x) = D̃x ◦ jk
x(s). In the coordinate chart V the k-jet jk

xs
corresponds to

(Dαf(y))|α|≤k ∈
⊕
|α|≤k

Cm ∼= Jk
x (E1),

where y = ϕ(x). Then there are linear mappings Aα(y) : Cm → Cn such that DUf(y) =∑
|α|≤k Aα(y)Dαf(y). One can verify that Aα(y) depend smoothly on y and thus DU is a

PDO of order k.
We have shown that a differential operator of order k is locally a PDO of order k. In

fact, the converse holds true: if D : ΓE1 → ΓE2 is a local operator which locally induces
a PDO of order k, then D is a differential operator of order k.

Now we are going to define the symbol of a differential operator. Recall first that a map
ϕ : V1 → V2 between two vector spaces is called polynomial of degree k if in some basis
e1, e2, . . . , en of V1 it is given by

ϕ

(
n∑

j=1

xjej

)
=
∑
|α|=k

xα1
1 x

α2
2 . . . xαn

n · vα,

where vα ∈ V2. The symbol of a differential operator will be a smooth section of the bundle
P k(T ∗M,L(E1, E2)), i.e. for each x ∈M we will get a polynomial mapping of degree k on
T ∗

xM with values in linear maps E1
x → E2

x.

Definition 1.4. Let D : ΓE1 → ΓE2 be a differential operator of order k. The symbol σD

of D is defined as follows. For v ∈ T ∗
xM and e ∈ E1

x take g ∈ C∞(M,R) with g(x) = 0
and dgx = v and s ∈ ΓE1 with s(x) = e. Then

σD(v)e = D

(
1

k!
gk · s

)
(x).

One should check that the definition of σD does not depend on the choices made and that
it is an element of ΓP k(T ∗M,L(E1, E2)). However, this is quite technical and so we refer
the reader to [19]. Note that the symbol may also be viewed as a vector bundle morphism
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between the pullback bundles p∗E1 and p∗E2, where p : T ∗M →M is the projection. This
will be important later.

Example 1.5. To get some insight into what the symbol is, we will compute it locally. Let
us have a PDO of order k as in Example 1.3. Put g(y) =

∑d
j=1 vj(yj − xj) and f(y) ≡ e.

Then clearly g(x) = 0, dgx = v and

σD(v)e = D

(
1

k!
gk · s

)
(x) =

1

k!

∑
|α|≤k

Aα(x)(Dαgk(x) · e) =

=
1

k!

∑
|α|=k

Aα(x)(k! vα · e) =
∑
|α|=k

vαAα(x)e.

Hence the symbol is given by σD(v) =
∑

|α|=k v
αAα(x), which is the algebraic counterpart

of the leading term of D.

Using the local formulas for differential operators and their symbols it can be shown
that they compose well. If D1 : ΓE1 → ΓE2 and D2 : ΓE2 → ΓE3 are differential operators
of orders k and l, then D2 ◦D1 is a differential operator of order k+ l and for the symbols
we have

σD2◦D1(v) = σD2(v) ◦ σD1(v)

for all v ∈ T ∗M .
A differential operator D : ΓE1 → ΓE2 is called elliptic if for all x ∈ M and v ∈ T ∗

xM ,
v 6= 0, the linear map σD(v) : E1

x → E2
x is an isomorphism.

A slightly more general notion is that of an elliptic complex. This is a finite sequence of
differential operators

D : 0 → ΓE0 D0−→ ΓE1 D1−→ ΓE2 D2−→ · · · Dr−1−−−→ ΓEr → 0

such that Dj ◦Dj−1 = 0 for all j = 1, 2, . . . , r and, moreover, we require that the sequence
of symbols

0 → E0
x

σD0
(v)

−−−−→ E1
x

σD1
(v)

−−−−→ E2
x

σD2
(v)

−−−−→ · · ·
σDr−1

(v)
−−−−−→ Er

x → 0

is exact for all x ∈M and v ∈ T ∗
xM , v 6= 0.

A nice and important property of elliptic complexes is that on compact manifolds the
cohomology groups Hj(D) = KerDj/ImDj−1 are finite dimensional, for the proof see [3].
We define the analytical index of an elliptic complex D as its Euler characteristic, i.e.

a-indD =
r∑

j=0

(−1)jdimCH
j(D).

In the case of a single elliptic operator D : ΓE1 → ΓE2, which is just an elliptic complex
of length one, the definition reduces to

a-indD = dimC KerD − dimC CokerD.

Elliptic complexes are quite common in differential geometry, the basic examples are the
deRham complex or the Dolbeault complex. We are, however, mainly interested in elliptic
complexes which arise quite naturally on quaternionic manifolds. These will be studied in
the next section.
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Example 1.6. Let M be a compact manifold and let Ωj = Γ(ΛjT ∗M ⊗ C) be the space
of complex-valued j-forms on M . It follows from the local description of the exterior
derivative d that it is a first order differential operator and then the deRham complex

0 → Ω0 d−→ Ω1 d−→ Ω2 d−→ · · · d−→ Ωm → 0

is a complex of differential operators.
Let us compute the symbol of d. Take a smooth function g with g(x) = 0 and dgx = v

and a j-form φ ∈ Ωj with φ(x) = e. Then

σd(v)e = d(g · φ)(x) = dgx ∧ φ(x) + g(x) · dφ(x) = v ∧ e

i.e. σd(v) : ΛjT ∗
xM ⊗ C → Λj+1T ∗

xM ⊗ C is just the exterior product on v.

Lemma 1.7. Let V be an n-dimensional real or complex vector space and let v ∈ V .
Consider the following complex of linear maps

0 → Λ0V
v∧−−−→ Λ1V

v∧−−−→ Λ2V
v∧−−−→ · · · v∧−−−→ ΛnV → 0.

This complex is exact if and only if v 6= 0.

Proof. If v = 0, then the complex is clearly not exact. Let v 6= 0 and assume that
(v, v2, . . . , vn) is a basis of V . An arbitrary e ∈ ΛjV can be written in the form

e =
∑

1<i2<...<ij≤n

e1i2...ijv ∧ vi2 ∧ . . . ∧ vij +
∑

1<i1<...<ij≤n

ei1i2...ijvi1 ∧ vi2 ∧ . . . ∧ vij .

Then we obtain

v ∧ e =
∑

1<i1<...<ij≤n

ei1i2...ijv ∧ vi1 ∧ vi2 ∧ . . . ∧ vij .

Therefore, if v ∧ e = 0, then ei1i2...ij = 0 for i1 > 1 and

e = v ∧
( ∑
1<i2<...<ij≤n

e1i2...ijvi2 ∧ . . . ∧ vij

)
.

In particular, e ∈ Im (v ∧ −) and the complex is exact. �

The lemma now implies that the deRham complex is an elliptic complex. Its analytical
index is well-known – the cohomology groups are just the de Rham cohomology groups
H∗

de R(M ; C) and the index is the usual Euler characteristic χ(M).

This example shows that the analytical index of an elliptic complex, although defined
purely from analytical data, may carry some topological information about the manifold.
This is the meaning of the Atiyah-Singer index theorem, which gives a topological formula
for the analytical index.
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2. Quaternionic manifolds and quaternionic complexes

The aim of this section is to introduce quaternionic manifolds and to show that there
is a large class of elliptic complexes over them. These complexes arise as subcomplexes of
the so-called curved BGG-sequences, which are constructed using the theory of parabolic
geometries. We will outline the basic notions and constructions and then state the results
for quaternionic manifolds.

We will start with the classical definition of quaternionic manifolds via G-structures.
Consider R4m as the space Hm of m-tuples of quaternions. Then the group Sp(1) of unit
quaternions acts on it by a · v = vā and GL(m,H) acts by left matrix multiplication.
These actions induce injections Sp(1) ↪→ GL(4m,R) and GL(m,H) ↪→ GL(4m,R). Now
we define the group Sp(1)GL(m,H) as the product of these groups in GL(4m,R). More
abstractly, Sp(1)GL(m,H) is isomorphic to the quotient Sp(1) ×Z2 GL(m,H), that is the
pair (A, a) ∈ Sp(1) × GL(m,H) represents the mapping v 7→ Avā. In the sequel we will
write simply G0 instead of Sp(1)GL(m,H).

Definition 2.1. A 4m-dimensional manifold M , m ≥ 2, is called almost quaternionic if it
has a G0-structure P , i.e. there is a principal G0-bundle P and an isomorphism of vector
bundles P ×G0 R4m ∼= TM . An almost quaternionic manifold is called quaternionic if the
G0-structure P admits a torsion-free connection.

Let G1 denote the group Sp(1)×GL(m,H), which is the double cover of G0. The bundle
P can be locally lifted to a principal G1-bundle P1. If ρ : G1 → Aut(V) is a representation
of G1, we can construct the associated vector bundle V = P1 ×G1 V. This vector bundle
exists globally if either the lift can be done globally, or the action ρ factors through G0.

Recall that the standard complex GL(m,H)-module (or Sp(m)-module) is defined as
follows. View Hm as a right vector space over H with the scalar multiplication being
the usual multiplication from right. Then, restricting scalars to C, left multiplication by
matrices in GL(m,H) is a complex linear map and so a complex representation.

Let E and F denote the standard complex Sp(1)-module and GL(m,H)-module, respec-
tively, and define a map ϕ : R4m = Hm → E⊗C F by ϕ(u) = j⊗ u− 1⊗ uj. This is a real
linear map which maps the real basis el, eli, elj, elk, 1 ≤ l ≤ m, of Hm to a complex basis
of E⊗C F. Moreover, by a direct computation one can verify that ϕ is G0-equivariant. It
follows that the complexification of the G0-module Hm is isomorphic to E⊗C F and then
we have the following isomorphisms of complex vector bundles

(2.2) T ∗M ⊗R C ∼= P ×G0 (E⊗C F) ∼= P1 ×G1 (E⊗C F) ∼= E ⊗C F.

However, note that the bundles E and F may not exist globally.
The above decomposition gives rise to a natural subcomplex of the deRham complex,

which we are going to describe now. Since irreducible complex Sp(1)-modules are precisely
the symmetric powers SjE, there exist irreducible GL(m,H)-modules Lj

k such that the
G1-module Λj(E⊗ F) decomposes as

Λj(E⊗ F) ∼=
[j/2]⊕
k=0

Sj−2kE⊗ Lj
k.
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It turns out that Lj
0 is the exterior power ΛjF. Therefore, for all 0 ≤ j ≤ 2n, the G1-module

Λj(E⊗ F) contains a G1-submodule

Aj ∼= SjE⊗ ΛjF.

This is in fact a G0-module because the action of G1 on SjE ⊗ ΛjF factors through G0.
But this together with the isomorphism from (2.2) implies that there is a natural vector
subbundle Aj ∼= P ×G0 Aj in Λj(T ∗M ⊗ C). Let d denote the exterior derivative on
complex-valued differential forms and pj : Λj(T ∗M ⊗ C) → Aj the projection. If we put
Dj = pj ◦ d, we obtain the following sequence of differential operators

(2.3) 0 → ΓA0 D1−→ ΓA1 D2−→ ΓA2 D3−→ · · · D2m−−→ ΓA2m → 0.

This sequence is closely related to the (almost) quaternionic structure of the manifold.

Theorem 2.4 (Salamon). An almost quaternionic manifold M is quaternionic if and only
if the sequence (2.3) is a complex. If this is the case, then the complex is elliptic.

Proof. The proof can be found in [20], Theorem 4.1. �

This statement is very similar to the corresponding statement about almost complex and
complex manifolds and the Dolbeault complex. For the quaternionic manifolds, the elliptic
complex (2.3) will be called the Salamon’s complex. It is the simplest case of a much wider
class of elliptic complexes constructed as subcomplexes of the BGG-sequences. We will
describe the BGG-sequences in a general setting of parabolic geometries and then return
to the quaternionic case to obtain the complexes in question. However, we will not give
many details – these can be found in [12] and [11], the general theory then in [10] – and
so we encourage the reader who is more interested in the method of computing indices to
skip the rest of the section and return later.

Parabolic geometries form a subclass of the more general Cartan geometries with some
additional structure on the Lie algebra g. So let us start with the Cartan geometries. We
will need some notation first. If G is a principal H-bundle, then we denote by rh : G → G
the principal right action of h ∈ H on G and by ζX(u) = d

dt
|t=0u · exp(tX) the fundamental

vector field on G determined by X ∈ h.

Definition 2.5. Let H ⊂ G be a Lie subgroup of a Lie group G and let g be the Lie
algebra of G. A Cartan geometry of type (G,H) on a manifold M is a principal H-bundle
p : G → M together with a g-valued one-form ω ∈ Ω1(G, g), called the Cartan connection,
which satisfies

(1) (rh)∗ω = Ad(h−1) ◦ ω for all h ∈ H,
(2) ω(ζX(u)) = X for all X ∈ h,
(3) ω|TuG : TuG → g is a linear isomorphism for all u ∈ G.

The first two properties say that ω is H-equivariant and that it reproduces the funda-
mental vector fields.

The simplest example of a Cartan geometry of type (G,H) is the homogeneous model,
which is the natural bundle p : G → G/H endowed with the left Maurer-Cartan form
ω ∈ Ω1(G, g) as the Cartan connection.
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The curvature form of a given Cartan geometry (G → M,ω) is a g-valued two-form
K ∈ Ω2(G, g) defined by

K(ξ, η) = dω(ξ, η) + [ω(ξ), ω(η)], ξ, η ∈ TuG.

Note that the Maurer-Cartan equation implies that the curvature of the homogeneous
model vanishes identically. The form K is equivariant and horizontal, hence it may be
viewed as a two-form κ ∈ Ω2(M,AM) on M with values in the adjoint tractor bundle
AM = G ×H g, here the action of H on g is given by restricting the adjoint action of G.

Exactly as for the homogeneous model, the Cartan connection induces an isomorphism
TM ∼= G ×H g /h, the action of H on g /h is again induced by the adjoint action. The
projection g → g /h then induces a projection Π: AM → TM and the TM -valued two-
form κ− = Π◦κ on M is called the torsion of the Cartan geometry. The geometry is called
torsion-free if this torsion vanishes.

Now we can move to the notion of a graded Lie algebra and then proceed to the definition
of parabolic geometries.

Definition 2.6. A |k|-grading on a semisimple Lie algebra g is a direct sum decomposition
into linear subspaces

g = g−k ⊕ . . .⊕ g−1⊕ g0⊕ g1⊕ . . .⊕ gk

such that [gi, gj] ⊂ gi+j and such that the Lie subalgebra g− = g−k ⊕ . . .⊕g−1 is generated
as a Lie algebra by g−1.

The subspaces gi = gi⊕ . . . ⊕ gk give a filtration of g and [gi, gj] ⊂ gi+j. In particular,
p = g0 is a Lie subalgebra of g and p+ = g1 is a nilpotent ideal in p.

If G is a Lie group with the Lie algebra g, we define its subgroups G0 ⊂ P ⊂ G by

G0 = {g ∈ G |Ad(g)(gi) ⊂ gi for all − k ≤ i ≤ k},
P = {g ∈ G |Ad(g)(gi) ⊂ gi for all − k ≤ i ≤ k}.

One can verify that G0 and P have Lie algebras g0 and p, respectively. The group P is
called the parabolic subgroup of G and G0 the Levi subgroup of P . Moreover, let P+ be the
image of p+ in the exponential map exp: p → P . Then P+ is a normal nilpotent subgroup
of P and it may be shown that P/P+

∼= G0. In particular, P is the semidirect product of
the subgroups G0 and P+.

Definition 2.7. A parabolic geometry on a manifold M is a Cartan geometry on M of
type (G,P ), where P is the parabolic subgroup in a semisimple Lie group G.

Many classical geometric structures on manifolds such as conformal, quaternionic or
CR-structures, may be described as a parabolic geometry of certain type.

Example 2.8. Put g = sl(m + 1,H), the Lie algebra of quaternionic matrices with the
real trace equal zero. Define a |1|-grading on g as follows. We have

g =

{(
a Z
X A

) ∣∣∣ a ∈ H, X, ZT ∈ Hn, A ∈ Matm(H), Re a+ Re(tr(A)) = 0

}
11



and the gradation looks like(
0 0
X 0

)
∈ g−1,

(
a 0
0 A

)
∈ g0,

(
0 Z
0 0

)
∈ g1 .

As the Lie group G take PGL(m + 1,H), the quotient of all invertible quaternionic
linear endomorphisms of Hm+1 by the closed normal subgroup of all real multiples of the
identity. Then the parabolic subgroup P is the image in the quotient of the stabilizer of the
quaternionic line in Hm+1 spanned by the first basis vector and G0

∼= Sp(1)GL(m,H). The
homogeneous model G/P can be identified with the quaternionic projective space HPm.

Under some regularity and normality conditions the parabolic geometry on M is de-
termined by an underlying geometric structure on M . In the case of |1|-gradings this is
nothing but a G0-structure on M in the usual sense. Indeed, since P acts freely on G, the
same is true for the subgroup P+ ⊂ P and we can consider the orbit space G0 = G/P+.
Then G0 →M is a principal bundle with the structure group P/P+

∼= G0. Recall that the
tangent bundle of M may be written as TM ∼= G ×P g/p, where the action of P on g/p
is induced by the adjoint action on g. But for |1|-graded geometries the group P+ acts
trivially on g/p and so we also get TM ∼= G0 ×G0 g/p, i.e. M admits a G0-structure.

In particular, a parabolic geometry of the type as in Example 2.8 above induces an
almost quaternionic structure on the manifold. On the other hand, it can be shown that
an almost quaternionic manifold admits a unique regular normal parabolic geometry of that
type and, moreover, this geometry is torsion-free if and only if the manifold is quaternionic.
For details and proofs see [10].

Having the basic notions in hand, we can proceed to outline the construction of the
BGG-sequences. Let (p : G → M,ω) be a parabolic geometry of type (G,P ) and let W
be a real or complex G-module. Then W is also a P -module and infinitesimally it is a
representation of the Lie algebra p+. Consider a mapping ∂∗ : Λk+1p+ ⊗W → Λkp+ ⊗W
defined on decomposamble elements by

∂∗(Z0 ∧ . . . ∧ Zk ⊗ v) =
k∑

i=1

(−1)i+1Z0 ∧ . . . ∧ Ẑi ∧ . . . ∧ Zk ⊗ Zi · v+

+
∑
i<j

(−1)i+j[Zi, Zj] ∧ Z0 ∧ . . . ∧ Ẑi ∧ . . . ∧ Ẑj ∧ . . . ∧ Zk ⊗ v,

where the hats denote omissions and the dot · is the infinitesimal action of p+ on W. One
can verify that ∂∗ ◦∂∗ = 0 and so we get a complex, the differential ∂∗ is called the Kostant
codifferential. Because all spaces in the complex are P -modules and ∂∗ is P -equivariant,
the homology groups Hk(p+,W) are naturally P -modules as well. In fact, the subgroup
P+ acts trivially on the homology and so the representation comes from the subgroup G0.

The Killing form of the Lie algebra g induces an isomorphism (g/p)∗ ∼= p+ of P -modules.
Hence T ∗M ∼= G ×P p+ and ΛkT ∗M ⊗W ∼= G ×P (Λkp+ ⊗ W) and the P -equivariancy
of ∂∗ implies that we obtain a vector bundle map ∂∗ : Λk+1T ∗M ⊗ W → ΛkT ∗M ⊗ W .
Again ∂∗ ◦ ∂∗ = 0 and the kernel and the image of ∂∗ are subbundles. Their quotient is
by construction isomorphic to the associated vector bundle G0 ×G0 Hk(p+,W), which we
denote by Hk(T

∗M,W ). These bundles appear in the curved Bernstein-Gelfand-Gelfand
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sequence (in short the BGG-sequence)

· · · → Γ(Hk−1(T
∗M,W ))

DW
−−→ Γ(Hk(T

∗M,W ))
DW
−−→ Γ(Hk+1(T

∗M,W )) → · · · .

The differential operators DW are constructed in [11]. An important property of these
operators is that they are strongly invariant (see [11]), which in particular implies that their
symbol is induced from P -equivariant polynomial maps p+ → L(Hk(p+,W), Hk+1(p+,W)).

The compostition DW ◦ DW is nontrivial in general and so the BGG-sequence is not a
complex. However, by splitting the G0-modules Hk(p+,W) into a direct sum of irreducible
components we obtain the corresponding splitting of Hk(T

∗M,W ) into a direct some of
subbundles and then the BGG-operators break into components acting between the irre-
ducible pieces. For torsion-free geometries one can find simple algebraic conditions under
which the composition of these components vanishes and hence gives rise to a subcomplex
in the BGG-sequence. This is the main result of [12].

The irreducible components ofHk(p+,W) may be described via the so-called Hasse graph
of the parabolic subalgebra p. In the case of quaternionic structures (see Example 2.8) this
graph has a triangular shape as is shown below for m = 2. Here Hk(p+,W) = ⊕i+j=kHi,j

is the decomposition into irreducible components and the arrows denote the splitting of
the BGG-operator DW into a sum D1,0 +D0,1 of two operators D1,0 : ΓHi,j → ΓHi+1,j and
D0,1 : ΓHi,j → ΓHi,j+1.

H0,0

D0,1

""FF
FF

FF
F

H1,1

D0,1

""FF
FF

FF
F

H2,2

D0,1

""FF
FF

FF
F

H3,3

D0,1

""FF
FF

FF
F

H4,4

H0,1

D1,0

<<xxxxxxx

D0,1

""FF
FF

FF
F

H1,2

D1,0

<<xxxxxxx

D0,1

""FF
FF

FF
F

H2,3

D1,0

<<xxxxxxx

D0,1

""FF
FF

FF
F

H3,4

D1,0

<<xxxxxxx

H0,2

D1,0

<<xxxxxxx

D0,1

""FF
FF

FF
F

H1,3

D1,0

<<xxxxxxx

D0,1

""FF
FF

FF
F

H2,4

D1,0

<<xxxxxxx

H0,3

D1,0

<<xxxxxxx

D0,1

""FF
FF

FF
F

H1,4

D1,0

<<xxxxxxx

H0,4

D1,0

<<xxxxxxx

The subcomplexes we are looking for are precisely the compositions of the D0,1-operators
and the D1,0-operators.

Theorem 2.9 (Čap, Souček). Let M be a quaternionic manifold of dimension 4m and
(G → M,ω) the corresponding torsion-free regular normal parabolic geometry of type
(PGL(m+1,H), P ). Then for each irreducible PGL(m+1,H)-module W the BGG-sequence
associated to the vector bundle W = G ×P W contains the following subcomplexes

ΓHj,j
D0,1

−−→ ΓHj,j+1
D0,1

−−→ . . .
D0,1

−−→ ΓHj,2m, for j = 0, 1, . . . , 2m− 2,

ΓH0,j
D1,0

−−→ ΓH1,j
D1,0

−−→ · · · D1,0

−−→ ΓHj,j, for j = 2, 3, · · · , 2m.

Proof. The proof can be found in [12]. �
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We have thus obtained a class of quaternionic complexes for each choice of the irreducible
PGL(m + 1,H)-module W. However, only some of them are known to be elliptic. Let V
be the standard complex GL(m+ 1,H)-module and put Wk = SkV∗⊗SkV. Then Wk is a
PGL(m+ 1,H)-module, because the action by the real multiples of the identity is trivial.
We will now describe more closely theD0,1-subcomplex of the corresponding BGG-sequence
starting at H0,0, i.e. the left edge of the triangle above. Denote by Wj

k the representation
of the group G0 = Sp(1)GL(m,H) inducing the vector bundle H0,j. Furthermore, let E
and F be the standard complex Sp(1)- and GL(m,H)-modules, respectively. According to
[20] the character ring of complex representations of the group GL(m,H) is isomorphic to
that of the group U(2m) ⊂ GL(2m,C). In particular, we have a theory of highest weights
for GL(m,H). Now one can show (see [12]) that

(2.10) Wj
k = Sj+kE⊗ (ΛjF⊗ SkF∗)0 for j < 2m, W2m

k = S2(m+k)E⊗ Λ2mF,
where the zero subscript denotes the irreducible component of the tensor product with the
highest weight being the sum of the highest weights of the respective factors.

Theorem 2.11 (Čap, Souček). Let M be a 4m-dimensional quaternionic manifold with
a G0-structure P. Denote by W j

k the associated vector bundle P ×G0 Wj
k. Then for each

k ≥ 0 the subcomplex

0 → ΓW 0
k

D0,1

−−→ ΓW 1
k

D0,1

−−→ · · · D0,1

−−→ ΓW 2m
k → 0

of the BGG-sequence is elliptic.

Proof. For the proof see again [12]. �

In fact, one can prove that also the right edge of the triangle, i.e. the D1,0-subcomplex
starting at H0,2m, is elliptic. However, the left and right edges are dual to each other and
so the analytical indices are equal.

Note that by setting k = 0 we obtain precisely the Salamon’s complex (2.3). The goal
of the rest of this thesis is to develop a technique for computing the analytical indices of
all the elliptic complexes from Theorem 2.11.

3. Characteristic classes and representations

This section is devoted to the theory of characteristic classes of principal G-bundles
and associated vector bundles. We will follow the approach of Borel and Hirzebruch ([8]),
which relies on the representation theory of compact Lie groups. This will be technically
very useful later, when we have to compute the Chern classes and the Chern character of
some complex vector bundles associated to a principal G-bundle.

Let G be a compact Lie group. Recall that a maximal torus T in G is a maximal con-
nected abelian subgroup of G and that the Weyl group of G is the group of automorphisms
of T which are restrictions of inner automorphisms of G. Let t be the Lie algebra of T .
Then the exponential map exp: t → T is the universal covering of T . The inverse image
of the identity element will be denoted ΛT = exp−1(e) and called the unit lattice of T .
This is a free commutative group of rank dimT . A real valued linear form on t is called
an integral weight if it takes integral values on ΛT .
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The unit lattice ΛT may be identified with the fundamental group π1(T ) as follows.
Choose u0 ∈ t and for each u ∈ ΛT take a path γu : [0, 1] → t joining u0 with u0 + u. Then
exp ◦γu is a loop in T and its homotopy class does not depend on the choice of γu. One
can see from lifting properties of covering spaces and the fact that t is simply connected
that the resulting map is an isomorphism.

Because π1(T ) is abelian as the fundamental group of a Lie group, it is isomorphic to
H1(T ; Z) and so is the unit lattice. But then H1(T ; Z) ∼= Hom(H1(T ; Z),Z) is isomorphic
to the group of integral weights.

Furthermore, there is an isomorphism H1(T ; Z) → H2(BT ; Z) which commutes with the
action of the Weyl group of G. This can be explicitly described as minus the transgression
map in the universal principal T -bundle (see for example [18]). Then it follows that
H∗∗(BT ; Z) ∼= Z[[t1, t2, . . . , tn]], the ring of formal power series. Here tj ∈ H2(BT ; Z) are
the images of a basis of integral weights and H∗∗(X) stands for the product

∏∞
j=0H

j(X)
of the cohomology groups.

The rational cohomology ring of the classifying space BG can be described as a subring
in H∗∗(BT ; Q). However, we will restrict our attention to the classifying space of the
unitary group U(n), which enables us to use the integer coefficients.

Proposition 3.1 (Borel). Let T be a maximal torus of the unitary group U(n). Then the
inclusion ι : T ↪→ U(n) induces an injection (Bι)∗∗ : H∗∗(BU(n); Z) → H∗∗(BT ; Z) whose
image is the subring of elements invariant under the action of the Weyl group of U(n).

Proof. The proof can be found in [7] or [18]. �

As a maximal torus T of U(n) we may take the set of all diagonal matrices of the formexp(2πix1) . . . 0
...

. . .
...

0 . . . exp(2πixn)

 .

Then x1, x2, . . . , xn viewed as forms on the Lie algebra t of T constitute a basis of integral
weights. The Weyl group of U(n) is the symmetry group Sn, it permutes the weights
x1, x2, . . . , xn and therefore also the elements t1, t2, . . . , tn ∈ H∗∗(BT ; Z). The above theo-
rem implies that H∗∗(BU(n); Z) ∼= Z[[c1, c2, . . . , cn]] where cj is the j-th elementary sym-
metric polynomial in t1, t2, . . . , tn.

Now we are ready to give a definition of Chern classes of complex vector bundles. Recall
that n-dimensional complex vector bundles are in bijective correspondence with principal
U(n)-bundles and so we can define the Chern classes for the principal bundles.

Let p : P → X be a principal U(n)-bundle and let T ⊂ U(n) be the maximal torus as
above. If E = P ×U(n) Cn is the vector bundle associated to P , then the quotient bundle
π : P/T → X is precisely the bundle of flags in fibres of E. Here by a flag we mean an
ordered n-tuple of mutually orthogonal lines in Cn. The classical splitting principle for
complex vector bundles (see [14]) says that the pullback vector bundle π∗E decomposes
into a sum of line bundles and, moreover, the induced map π∗ : H∗(X; Z) → H∗(P/T ; Z)
is injective. The space P is also the base space of the principal T -bundle P → P/T . Let
x1, x2, . . . , xn be a basis of integral weights as before and put yj = −τ(xj) ∈ H2(P/T ; Z),
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where τ : H1(T ; Z) → H2(P/T ; Z) is the transgression map in the bundle P → P/T . We
define the total Chern class c(P) of P by

π∗(c(P)) =
n∏

j=1

(1 + yj).

As noted before, the map π∗ is injective and so the element c(P) is uniquely determined
once we know that the right-hand side lies in the image of π∗. For this, let f : X → BU(n)
be the classifying map for P . Then we have the following commutative diagram

P //

��

P/T π //

��

X

f
��

EU(n) // EU(n)/T
π′ // BU(n).

But EU(n) → EU(n)/T is a principal T -bundle and EU(n) is contractible. Therefore
EU(n)/T is precisely BT and π′ is Bι, where ι : T ↪→ U(n) is the inclusion. Now the claim
follows from the previous description of H∗∗(BU(n); Z).

Writing c(P) = 1 + c1(P) + . . .+ cn(P) in its homogeneous components we also get the
individual Chern classes cj(P) ∈ H2j(X; Z). These are mapped by π∗ to the elementary
symmetric polynomials in yj. Furthermore, we define the Chern character ch(P) and the
Todd class td(P) by

π∗∗(ch(P)) =
n∑

j=1

eyj =
∞∑

j=0

1

j!

(
yj

1 + . . .+ yj
n

)
, π∗∗(td(P)) =

n∏
j=1

yj

1− e−yj
.

Because the expressions on the right-hand side are symmetric in the yj’s, one can write
both ch(P) and td(P) as power series in the Chern classes c1(P), c2(P), . . . , cn(P), for
more details see Appendix A.

Note that all these characteristic classes are natural with respect to principal bundle
maps, i.e. if f : (P1 → X1) → (P2 → X2) is a principal bundle map then f ∗c(P2) = c(P1)
and similarly for the other two. This follows from the fact that principal bundle maps
commute with transgressions.

By considering associated vector bundles to principal U(n)-bundles we may view the
Chern classes, the Chern character and the Todd class as defined on complex vector bun-
dles. It can be verified (see [8]) that these definitions are equivalent to the more standard
ones. The usefulness of this particular approach will be apparent from the following.

Let G be a compact Lie group and S ⊂ G its maximal torus. Let λ : G → U(n) be a
complex representation of G such that λ(S) ⊂ T , where T ⊂ U(n) is the maximal torus
as before. Then we have the induced map λ∗ : H1(T ; Z) → H1(S; Z). Let x1, x2, . . . , xn be
the basis of H1(T ; Z). The elements ωj = λ∗(xj), viewed either as elements of H1(S; Z) or
integral weights, are called the weights of λ. Of course, for each s ∈ S the matrix λ(s) is
diagonal with entries exp(2πiωj), i.e. ωj are the weights of the representation λ in its usual
sense. If P is a principal G-bundle, we may construct its λ-extension Pλ = P ×λ U(n),
which is a principal U(n)-bundle. Here the action of G on U(n) is given by g · a = λ(g)a.
The following proposition will be crucial for all our computations.
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Proposition 3.2 (Borel, Hirzebruch). Let λ : G → U(n) be a complex representation of
a compact Lie group G such that λ(S) ⊂ T , where S is a maximal torus in G. Let ωj be
the weights of λ. For a principal G-bundle P → X consider its λ-extension Pλ. Denote
by η : P/S → X the projection and put wj = −τ(ωj), where τ : H1(S; Z) → H2(P/S; Z)
is the transgression map in the principal S-bundle P → P/S. Then

η∗(c(Pλ)) =
n∏

j=1

(1 + wj),

η∗∗(ch(Pλ)) =
n∑

j=1

ewj , η∗∗(td(Pλ)) =
n∏

j=1

wj

1− e−wj
.

Proof. Consider the λ-map φ : P → Pλ = P ×λ U(n) defined by φ(p · g−1) = [p · g−1, λ(g)].
Then we have the following commutative diagram

S

λ

��

// P
φ

��

// P/S

φ1

��

η // X

idX

��
T // Pλ

// Pλ/T
π // X.

By the definition of Chern classes we have

π∗(c(Pλ)) =
n∏

j=1

(1− τ(xj)),

where τ is the transgression map in the principal T -bundle Pλ → Pλ/T . Because the map
φ∗1 commutes with transgressions we obtain

η∗(c(Pλ)) = φ∗1 ◦ π∗(c(Pλ)) =
n∏

j=1

(1− φ∗1 ◦ τ(xj)) =
n∏

j=1

(1− τ ◦ λ∗(xj)) =
n∏

j=1

(1 + wj)

and this is the first claimed formula. The other two may be proved similarly. �

The maps η∗ and η∗∗ may not be injective in general. However, there are two special
cases in which both these maps are injective. The first is if P is a principal U(m)-bundle,
as we already know by the splitting principle. The second is if P is the universal prin-
cipal G-bundle EG → BG for some classical Lie group G and we consider the rational
cohomology groups. Indeed, from EG we get a principal S-bundle EG → EG/S with
the total space EG being contractible, hence EG/S is the classifying space BS and then
η : BS = EG/S → BG is the classifying map Bι induced by the inclusion ι : S ↪→ G. It
is shown in [7] that for the classical groups G = SO(m) or G = Sp(m) the induced map
(Bι)∗∗ is injective at least over the rationals. In these cases we may formally ignore η∗ or
η∗∗ and write the formulas in Proposition 3.2 as formal equalities in the cohomology ring
of the base space BG.

By considering associated bundles to the principal bundles we obtain the same result for
complex vector bundles. As an easy illustration of the proposition we will now compute
the Chern classes of the exterior powers of the standard representation of U(m).
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Example 3.3. Let x1, x2, . . . , xm be the standard basis of integral weights of U(m) and
let 0 ≤ k ≤ m be an integer. Consider the standard representation λ : U(m) → U(

(
m
k

)
)

of U(m) on the k-th exterior power ΛkCm. If (ej) is the canonical basis of Cm, then the
products ej1 ∧ ej2 ∧ . . .∧ ejk

constitute a basis of ΛkCm and the action of an element x ∈ S
in the maximal torus is given by

λ(x)(ej1 ∧ ej2 ∧ . . . ∧ ejk
) = exp[(2πi)(xj1 + xj2 + . . .+ xjk

)] · ej1 ∧ ej2 ∧ . . . ∧ ejk
.

Hence the weights of λ are the sums xj1 +xj2 + . . .+xjk
, where 1 ≤ j1 < j2 < . . . < jk ≤ m.

Now if P → X is a principal U(m)-bundle, then Pλ is the principal frame bundle of the
k-th exterior power of the complex vector bundle associated to P . The Chern classes of
these bundles are given by

c(P) =
m∏

j=1

(1 + yj), c(Pλ) =
∏

1≤j1<...<jk≤m

(1 + yj1 + . . .+ yjk
).

The first formula follows from the definition and the second by applying Proposition 3.2.
We also ignore the map η∗ as was said before. Then the Chern classes cl(P) are precisely the
elementary symmetric polynomials in yj’s and the Chern classes cl(Pλ) are some symmetric
polynomials in yj’s and thus they can be written as polynomials in cl(P)’s.

If E = P ×U(m) Cm is the complex vector bundle associated to P , then Pλ ×U((m
k)) C(m

k)

is the exterior power ΛkE. For further purposes we will need the following simple formula
for the Chern character of the formal polynomial Λt(E) =

∑m
k=0 t

kΛkE ∈ H∗∗(X; Q)

(3.4) ch(Λt(E)) =
m∑

k=0

tk

( ∑
1≤j1<...<jk≤m

eyj1
+...+yjk

)
=

m∏
j=1

(1 + teyj).

Proposition 3.2 can also be used to prove that for two complex vector bundles E1 and
E2 we have the relations

ch(E1 ⊕ E2) = ch(E1) + ch(E2), ch(E1 ⊗ E2) = ch(E1) ch(E2),

td(E1 ⊕ E2) = td(E1) td(E2).

Indeed, if V1 and V2 are the corresponding G-modules, then the weights of V1 ⊕ V2 are
precisely the weights of V1 and V2 altogether and the weights of V1 ⊗ V2 are the sums of
the weights of V1 with the weights of V2.

4. K-theory and the topological index

In this section we will first outline the relation between symbols of elliptic complexes
and the K-theory and then state the Atiyah-Singer index theorem, which will be our basic
tool for computing the analytical indices. However, it is not the aim to give a proof of the
index theorem.

Let X be a compact topological space. Isomorphism classes of complex vector bundles
overX form an abelian semigroup under the Whitney sum and we define the K-group K(X)
of X as the corresponding Grothendieck group. More explicitly, K(X) is the quotient of
the free group generated by isomorphism classes [E] of complex vector bundles under the

18



equivalence relation [E1 ⊕ E2] ∼ [E1] + [E2]. Then K(X) is a commutative ring under
the tensor product of vector bundles. A continuous map f : X → Y between two compact
spaces induces a ring homomorphism f ∗ : K(Y ) → K(X) by taking pullback bundles.

If X has a given basepoint x0, we define the reduced K-group K̃(X) as the kernel of the

homomorphism i∗ : K(X) → K(x0) induced by the inclusion i : x0 ↪→ X. Then K̃(X) is a
ring generally without an identity.

For a locally compact space X we define K(X) = K̃(X+) where X+ is the one-point

compactification ofX. IfX is actually compact, thenX+ = Xtx0 and K̃(Xtx0) ∼= K(X),
i.e. the two definitions coincide.

There is an equivalent definition of K(X) for all locally compact spaces X which will be
suitable for our purposes. By a complex E∗ of vector bundles on X we mean a collection
of vector bundle morphisms αj : Ej → Ej+1, 0 ≤ j ≤ r, called differentials, such that for
each x ∈ X the sequence

(4.1) 0 → E0
x

α0−→ E1
x

α2−→ · · · αr−1−−−→ Er
x → 0

is a complex, i.e. αj ◦αj−1 = 0. A morphism f : E∗ → F ∗ of two complexes E∗ = (Ej, αj)
and F ∗ = (F j, βj) is a collection of vector bundle morphisms fj : Ej → F j such that
fj ◦ αj = βj ◦ fj−1. The support of a complex E∗ is the set of points x ∈ X for which the
sequence (4.1) is not exact. A complex E∗ is called acyclic if it has empty support, i.e.
(4.1) is exact for all x.

Denote by L(X) the set of isomorphism classes of complexes onX with compact support.
Then L(X) is an abelian semigroup under the direct sum. Two elements E∗

0 and E∗
1 of

L(X) are called homotopic if there is E∗ ∈ L(X × [0, 1]) such that E∗
0
∼= E∗|X×{0} and

E∗
1
∼= E∗|X×{1}. We say that E∗

0 , E
∗
1 ∈ L(X) are equivalent and write E∗

0 ∼ E∗
0 if there are

acyclic complexes F ∗
0 , F

∗
1 ∈ L(X) such that E∗

0 ⊕F ∗
0 and E∗

1 ⊕F ∗
1 are homotopic. It is easy

to verify that ∼ is an equivalence relation and we have the following important result.

Proposition 4.2 (Atiyah, Segal). Let X be a locally compact space. Then L(X)/ ∼ is an
abelian group naturally isomorphic to K(X).

Proof. A very nice proof using some homological algebra can be found in [23]. �

If X is actually compact, then of course each complex has compact support and the
isomorphism is simply given by E∗ 7→

∑r
j=0(−1)jEj. This map is certainly surjective and

injectivity follows from the fact that each complex on a compact space is homotopic to a
complex of length one with the zero differential.

Example 4.3. Let M be a compact manifold and D an elliptic complex over it. Then the
symbol σD of D is a complex of vector bundles on T ∗M and its support is precisely the
zero section of the projection p : T ∗M → M , which is isomorphic to M , hence compact.
Therefore σD defines a class in L(T ∗M) and thus also in K(T ∗M) ∼= K(TM) – here T ∗M
is identified with TM by means of a Riemannian metric.

It can be shown that the analytical index of an elliptic complex D depends only on its
symbol class σD in K(TM). In other words, if the symbols of two elliptic complexes on
M determine the same class in K(TM), then their analytical indices are equal. It follows
that the analytical index defines correctly a mapping from some subset of K(TM) to Z.

19



If we consider a broader class of operators called pseudodifferential operators, then this
mapping is defined on the whole of K(TM) and, moreover, it is a homomorphism of rings.
Let us denote it by a-ind: K(TM) → Z and call the analytical index.

The idea of the Atiyah-Singer index theorem is to study this homomorphism more ab-
stractly. For each compact manifold X there is a naturally defined ring homomorphism
t-ind: K(TM) → Z, called the topological index, and this can be uniquely characterized
by several axioms. The proof of the index theorem then goes along to verify that these
axioms are also satisfied by the analytical index a-ind and so this must coincide with the
topological index t-ind. All the details can be found in the article [4].

Although defined in K-theory, the topological index can be translated into cohomol-
ogy using the Chern character. Because the Chern character preserves Whitney sums
and tensor products and depends only on the isomorphism class of the vector bundle, it
can be extended to a ring homomorphism ch: K(X) → H∗(X; Q) for X compact and

ch: K̃(X+) → H̃∗(X+; Q) for X locally compact. For an arbitrary compact manifold M
the one-point compactification of its tangent bundle TM is homeomorphic to the quotient
bundle BM/SM , where BM and SM are the unit ball and unit sphere bundles of TM ,

respectively. Denote by ψ : H∗(M ; Q) → H∗(BM,SM ; Q) ∼= H̃∗(TM+; Q) the Thom iso-
morphism and by [M ] the fundamental class of M . The Atiyah-Singer index theorem may
now be stated as follows.

Theorem 4.4 (Atiyah, Singer). Let D be an elliptic complex on a compact oriented man-
ifold M of dimension m and let σD ∈ K(TM) be its symbol class. Then

a-indD = t-indσD = (−1)m(m+1)/2{ψ−1(chσD) · td(TM ⊗ C)}[M ].

Proof. A proof of the first equality is in [4], while the second one is proved in [5]. �

Note that while the left-hand side of the formula above is an integer, the right-hand side
is a priory only a rational number. This often provides some integrality conditions on the
characteristic classes involved.

From now on we do not need to distinguish between the analytical and the topological
index and so we will write only indD for the analytical index of an elliptic complex D.
Although the Atiyah-Singer formula looks rather simple, there is still a problem with
computing the Chern character of the symbol class σD. We will see in the next section
that for some special classes of elliptic complexes related to a G-structure on the manifold
this problem can be solved quite easily.

Before we move to this, let us note that there is an immediate corollary of the index
theorem, which may be quite surprising.

Corollary 4.5 (Atiyah, Singer). Let D be an elliptic complex on a compact oriented odd-
dimensional manifold M . Then its analytical index is zero.

Proof. Let F : T ∗M → T ∗M be the antipodal map, i.e. F (v) = −v, and p : T ∗M →M the
projection. Consider first an elliptic differential operator d : ΓE1 → ΓE2 on M of order k.
Then its symbol satisfies σd(F (v)) = (−1)kσd(v). However, σd and (−1)kσd as elements of
L(T ∗M) are homotopic through

T ∗M × [0, 1] 3 (v, t) 7→ eiπktσd(v) : (p∗E1)v → (p∗E2)v.
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It follows that in K(T ∗M) = K(TM) we have F ∗(σd) = σd. Analogously, this holds for an
elliptic complex D and its symbol σD. In particular, F ∗(chσD) = chF ∗(σD) = chσD. In
the cohomology of T ∗M , the induced map F ∗ sends the Thom class τ of T ∗M to (−1)mτ ,
where m = dimM . Note finally that the base map F of F is the identity on M . Assuming
that m is odd, from all these observations and naturality we obtain

indD = (−1)m(m+1)/2{ψ−1(chσD) · td(TM ⊗ C)}[M ] =

= (−1)m(m+1)/2F ∗{ψ−1(chσD) · td(TM ⊗ C)}F ∗[M ] =

= (−1)m(m+1)/2{−ψ−1(F ∗(chσD)) · td(TM ⊗ C)}[M ] =

= −(−1)m(m+1)/2{ψ−1(chσD) · td(TM ⊗ C)}[M ] = −indD.

Because indD is an integer, this implies that it must be zero. �

As we saw earlier, the Euler characteristic is the index of the de Rham complex. The
corollary is thus a deep generalization of the well-known fact that the Euler characteristic
of an odd-dimensional manifold is zero (see [13]).

5. Symbols associated to G-structures

The aim of this section is to develop a technique for computing indices for elliptic
complexes whose symbol is in some way induced from a G-structure on the manifold.
The idea is to reduce the computation to the classifying space BG of the group G and
then apply the theory of characteristic classes as was presented earlier. We will end this
section with two simple examples – the deRham complex and the Salamon’s complex on
hyperkähler manifolds.

Let M be a compact oriented manifold, G a compact Lie group and V a real oriented
G-module. Suppose that M admits a G-structure, i.e. there is a principal G-bundle P and
an isomorphism of oriented vector bundles TM ∼= P ×G V. Let Ej, 0 ≤ j ≤ r, be complex
G-modules and put Ej = P ×G Ej. Denote by D an elliptic complex

0 → ΓE0 D0−→ ΓE1 D1−→ · · · Dr−1−−−→ ΓEr → 0

of differential operators on M . Assume further that ϕj : V∗ → L(Ej,Ej+1) is a polynomial
G-equivariant map such that for all v ∈ V∗, v 6= 0, the sequence

(5.1) 0 → E0 ϕ0(v)−−−→ E1 ϕ1(v)−−−→ · · · ϕr−1(v)−−−−→ Er → 0

is exact. If the symbol sequence σD of D is induced via the isomorphisms T ∗M ∼= P×G V∗

and Ej ∼= P ×G Ej from (5.1), then we say that σD is associated to the G-structure P . To
be more explicit, the symbol is a sequence of fibrewise polynomial bundle maps

T ∗M = P ×G V∗ → L(Ej, Ej+1) = P ×G L(Ej,Ej+1)

and we require that [p, v] 7→ [p, ϕj(v)].

Example 5.2. Let G = SO(m) and put Ej = Λj(Cm)∗. Then a G-structure on M is
induced by a Riemannian metric and an orientation of TM and Ej = Λj(T ∗M ⊗ C).
Consider the deRham complex of complex-valued differential forms

0 → ΓE0 d−→ ΓE1 d−→ ΓE2 d−→ · · · d−→ ΓEm → 0.

21



As we saw in Section 1, its symbol at (x, v) ∈ T ∗M is given by the exterior product

0 → E0
x

v∧−−−→ E1
x

v∧−−−→ E2
x

v∧−−−→ · · · v∧−−−→ Em
x → 0.

It is now obvious that this symbol is associated to the SO(m)-structure of M via the
mappings ϕj(v) = v ∧ −.

We will need further a general notion of characteristic classes for principal G-bundles.

Definition 5.3. Let G be a compact Lie group. A characteristic class of principal G-
bundles is a function α assigning to every principal G-bundle p : P → X a cohomology class
α(P) in H∗∗(X;R) =

∏∞
j=0H

j(X;R), where R is some fixed coefficient ring. Moreover,
we require that this function is natural with respect to principal bundle maps, i.e. if
f : (P1 → X1) → (P2 → X2) is a principal bundle map then f ∗∗c(P2) = c(P1).

The naturality property implies that there is a bijective correspondence between char-
acteristic classes of principal G-bundles and elements of H∗∗(BG;R), where BG is the
classifying space of the group G. Indeed, for each principal G-bundle P → X there is
an up to homotopy unique map f : X → BG such that P ∼= f ∗(EG), the pullback of the
universal principal G-bundle. But then α(P) = f ∗∗α(EG) and so α is uniquely determined
by α(EG).

We are interested in characteristic classes with rational coefficients. Therefore, an im-
portant result for us is that H∗∗(BG; Q) is a ring of formal power series in several indeter-
minates with rational coefficients, hence an integral domain. This is shown in [7].

Now we can state and prove a simplification of the index theorem, which is appropriate
for our purposes.

Proposition 5.4 (Atiyah, Singer). Let M be a compact oriented manifold of dimension
2m, G a compact Lie group and ρ : G→ SO(2m) a homomorphism. Assume that M has a
G-structure P, i.e. TM is associated to P via ρ. Let Ej, 0 ≤ j ≤ r, be complex G-modules
and let Ej be the corresponding associated vector bundles. Suppose that

0 → ΓE0 D0−→ ΓE1 D1−→ · · · Dr−1−−−→ ΓEr → 0

is an elliptic complex with its symbol associated to the G-structure P. Let f : M → BG be

the classifying map for the bundle P. Put Ẽj = EG ×G Ej and Ṽ = EG ×ρ R2m. If the

Euler class e(Ṽ ) is nonzero, then it divides
∑

(−1)jch Ẽj ∈ H∗∗(BG; Q) and the index of
the above complex is given by

(−1)m

{
f ∗∗

(∑r
j=0(−1)jch Ẽj

e(Ṽ )

)
· td(TM ⊗ C)

}
[M ].

Proof. We will follow the proof given in [5]. We would like to simplify the term ψ−1(chσD)
in Theorem 4.4. Denote by V the real oriented G-module corresponding to the representa-
tion ρ. For an arbitrary compact principal G-bundle P → X we may construct a complex
E∗ of vector bundles2 over V ∗ = P ×G V∗ precisely as in the beginning of the section. Of
course, we do not require now that this should be the symbol of an elliptic complex. Then

2Throughout the proof, E∗ will always stand for a complex of vector bundles as in the preceding section,
while V ∗ will be the dual vector bundle to V .
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E∗ determines a class in K(V ∗) and so we may define α(P) = ψ−1(chE∗) ∈ H∗(X; Q),
where ψ is the Thom isomorphism for the oriented vector bundle p : V ∗ → X. Clearly,
P 7→ α(P) is a characteristic class of principal G-bundles. To prove the proposition we
have to compute this class.

The Euler class e(Ṽ ∗) = e(Ṽ ) ∈ H∗(BG; Q) determines a characteristic class e of prin-
cipal G-bundles. Explicitly, e(P) = e(P ×G V). If i : X → V ∗ is the inclusion as the
zero section, then e(V ∗) = i∗ψ(1). Therefore, by applying i∗ on the Thom isomorphism
ψ(α(P)) = p∗(α(P)) · ψ(1) we obtain i∗(chE∗) = α(P) · e(P). This implies that the left-
hand side is again a characteristic class. But i∗(chE∗) = ch(i∗E∗) and i∗E∗ is the following
complex of vector bundles on X

0 → P ×G E0 0−→ P ×G E1 0−→ · · · 0−→ P ×G Er → 0.

Because X is compact, this complex determines in K(X) the class
∑r

j=0(−1)jP ×G Ej. In

particular, ch(i∗E∗) =
∑r

j=0(−1)j ch(P ×G Ej). It follows that this characteristic class of

principal G-bundles is defined by the element
∑r

j=0(−1)j ch Ẽj ∈ H∗∗(BG; Q) and from
above we have the equality

r∑
j=0

(−1)j ch Ẽj = α(EG) · e(Ṽ ).

Because e(Ṽ ) 6= 0 and H∗∗(BG; Q) is an integral domain, we may divide by e(Ṽ ) to obtain
α(EG) and so the charecteristic class α.

Finally, return to the case when P is the G-structure on the manifold M and E∗ is the
symbol σD. If P ∼= f ∗EG, then

ψ−1(chσD) = α(P) = α(f ∗EG) = f ∗∗α(EG) = f ∗∗

(∑r
j=0(−1)j ch Ẽj

e(Ṽ )

)
and inserting into Theorem 4.4 we get the claimed formula. �

Note that the proposition shows that if we have two elliptic complexes between the
same bundles whose symbols are associated to the G-structure on M , then their indices
are equal. In particular, the index does not depend on the actual differential operators.

We have seen before that the symbol of the deRham complex is associated to a SO(m)-
structure on M . Similarly, by introducing a Riemannian metric on a quaternionic manifold
M , we may endow it with a Sp(1)Sp(m)-structure and then the symbol of the Salamon’s
complex (2.3) is associated to the given Sp(1)Sp(m)-structure. More generally, this holds
for all the quaternionic complexes from Theorem 2.11. Therefore, once we show that the
Euler class of the universal vector bundle over BSp(1)Sp(m) is nonzero, we can apply the
above proposition. We will study quaternionic structures from the topological viewpoint
in more detail in the next section.

We will illustrate now the use of Proposition 5.4 together with Proposition 3.2 on two
rather simple examples.

Example 5.5. Let M be a compact 2m-dimensional oriented Riemannian manifold. We
will compute the (topological) index of the de Rham complex by applying Proposition 5.4
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with ρ : SO(2m) → SO(2m) being the identity and Ej = Λj(C2m)∗. As we know from
Section 1, the index must equal the Euler characteristic of the manifold and so we will
compare the two results in the end.

Put Ṽ = ESO(2m) ×SO(2m) R2m, the universal real vector bundle. The Euler class of
this vector bundle is nonzero (see [14]), hence the condition is satisfied. Moreover, we have

Ẽj = Λj(Ṽ ⊗C)∗ ∼= Λj(Ṽ ⊗C) and so we only need to compute the Chern character of the

polynomial Λ−1(Ṽ ⊗ C). In view of the formula (3.4) it suffices to find the Chern classes

of Ṽ ⊗ C. We will apply Proposition 3.2.
As a maximal torus S of SO(2m) we may take the subgroup of block diagonal matrices

with blocks D1, D2, . . . , Dm of the form

Dj =

(
cos 2πxj − sin 2πxj

sin 2πxj cos 2πxj

)
.

Then x1, x2, . . . , xm viewed as linear forms on the Lie algebra s form a basis of integral
weights. Consider a representation λ : SO(2m) → U(2m) given as a composition δ ◦ γ of
the inclusion γ : SO(2m) ↪→ U(2m) and the inner automorphism δ : A 7→ BAB−1, where
B is the block diagonal matrix with blocks

1√
2

(
1 i
1 −i

)
.

The maximal torus S is mapped onto the diagonal matrices with entries exp(±2πixj), i.e.
the forms ±xj are the weights of the representation λ. The λ-extension ESO(2m)λ is the

principal frame bundle of the complex vector bundle Ṽ ⊗ C. Then we have 3

c (Ṽ ⊗ C) =
m∏

j=1

(1 + yj)(1− yj), ch(Λ−1(Ṽ ⊗ C)) =
m∏

j=1

(1− eyj)(1− e−yj)

and similarly for the Todd class

td(Ṽ ⊗ C) =
m∏

j=1

yj(−yj)

(1− e−yj)(1− eyj)
.

Now let f : M → BSO(2m) be the classifying map of the SO(2m)-structure of M . Then

TM ⊗C ∼= f ∗(Ṽ ⊗C) and so td(TM ⊗C) = f ∗∗ td(Ṽ ⊗C). The topological index of the
deRham complex is given by

ind = (−1)mf ∗∗

(
ch(λ−1(Ṽ ⊗ C))

e(Ṽ )
· td(Ṽ ⊗ C)

)
[M ] =

= (−1)mf ∗∗

(∏m
j=1(1− eyj)(1− e−yj)

e(Ṽ )
·

m∏
j=1

yj(−yj)

(1− e−yj)(1− eyj)

)
[M ] =

= (−1)mf ∗∗

(
(−1)m

∏m
j=1 y

2
j

e(Ṽ )

)
[M ].

3In the notation of Proposition 3.2 the xj correspond to the ωj and the yj to the wj .
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The numerator of the fraction is precisely the Chern class c2m(Ṽ ⊗ C). This by definition

equals the Pontryagin class (−1)mpm(Ṽ ) and one computes that pm(Ṽ ) = e(Ṽ )2, see [14].
Cancelling and applying the pullback we get a simple formula for the topological index of
the de Rham complex

ind = e(TM)[M ].

This must equal the analytical index which we have computed to be the Euler characteristic
of M . Hence we have obtained the well-known (see [17]) relation

χ(M) = e(TM)[M ]

between the Euler class and the Euler characteristic.

As a second example we will compute the index of the Salamon’s complex (2.3) in the
special case of manifolds admitting a GL(n,H)-structure with a torsion-free connection.
This applies, for example, to hyperkähler manifolds.

Example 5.6. Let M be a compact 4m-dimensional manifold with a GL(m,H)-structure
admitting a torsion-free connection. Because GL(m,H) is a subgroup of Sp(1)GL(m,H),
the manifold M is quaternionic and so the Salamon’s complex has sense. However, in this
case both the bundles E and F exist globally and E is trivial. Moreover, the cotangent
bundle T ∗M is isomorphic to the complex vector bundle F up to the orientation – for m
even the orientations coincide and for m odd they are opposite. Indeed, T ∗M is oriented
as a quaternionic vector bundle while F as a complex vector bundle. The representations
Aj look like Cj+1 ⊗ ΛjF.

By introducing a Riemannian metric on M we may reduce the GL(m,H)-structure to
a Sp(m)-structure P (not necessarily admitting a torsion-free connection) and thus apply
Proposition 5.4 with ρ : Sp(m) ↪→ SO(4m) being the standard inclusion from Section 2

and Ej = Aj. The Euler class of the universal bundle Ṽ = ESp(m)×ρ R4m equals the top-
dimensional symplectic Pontryagin class (see [18]), which is nonzero, hence the condition

is satisfied. Consider furthermore the universal vector bundles F̃ = ESp(m)×Sp(m) F and

Ãj = ESp(m) ×Sp(m) Aj. Then Ṽ ∼= F̃ up to the orientation and Ãj ∼= Cj+1 ⊗ ΛjF̃ . By

noting F̃ ∼= F̃ this implies that we have

e(Ṽ ) = (−1)mc2m(F̃ ), td(Ṽ ⊗ C) = td(F̃ ⊕ F̃ ) = td(F̃ )2.

Therefore, if f : M → BSp(m) is the classifying map for P , then the index of the Salamon’s
complex is given by

(5.7) ind = f ∗∗

(∑2m
j=0(−1)j(j + 1)ch ΛjF̃

(−1)mc2m(F̃ )
· td(F̃ )2

)
[M ].

To simplify this formula, we will first have to compute the Chern classes of the com-

plex vector bundle F̃ using Proposition 3.2. As a maximal torus S of the group Sp(m)
we take the subgroup of diagonal matrices with entries exp(2πixj), where xj ∈ R. Then
x1, x2, . . . , xm viewed as linear forms on the Lie algebra s constitute a basis of integral
weights. The representation λ : Sp(m) → U(2m) will be the standard complex representa-
tion F. The maximal torus S is mapped onto diagonal matrices with entries exp(±2πixj),
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hence the weights of λ are the forms ±xj, 1 ≤ j ≤ m. Clearly, the λ-extension ESp(m)λ is

precisely the principal frame bundle of the complex vector bundle F̃ . It follows that the

total Chern class and the Todd class of F̃ are

c(F̃ ) =
m∏

j=1

(1 + yj)(1− yj), td(F̃ ) =
m∏

j=1

yj(−yj)

(1− e−yj)(1− eyj)
.

In particular, the last Chern class is c2m(F̃ ) =
∏m

j=1 yj(−yj).

It remains only to compute the numerator of the fraction in (5.7). Instead of the coeffi-
cient (−1)j write tj and recall the formula (3.4). Then proceed as follows

2m∑
j=0

(j + 1)tj ch(ΛjF̃ ) =
d

dt

(
2m∑
j=0

tj+1 ch(ΛjF̃ )

)
=

=
d

dt

(
t · ch(Λt(F̃ )

)
=

d

dt

(
t

m∏
j=1

(1 + teyj)(1 + te−yj)

)
=

=
m∏

j=1

(1 + teyj)(1 + te−yj) + t
m∑

j=1

(eyj(1 + te−yj) + e−yj(1 + teyj))
m∏

k=1
k 6=j

(1 + teyk)(1 + te−yk).

Substitute t = −1 and consider the first factor in the sum on the right

eyj(1− e−yj) + e−yj(1− eyj) = eyj(1− e−yj)− (1− e−yj) = −(1− e−yj)(1− eyj).

Inserting back into the formula above and looking at the summands we end up with

2m∑
j=0

(−1)j(j + 1)ch ΛjF̃ = (m+ 1)
m∏

j=1

(1− eyj)(1− e−yj).

The interior of the bracket in (5.7) now can be written as

(m+ 1)
∏m

j=1(1− eyj)(1− e−yj)

(−1)m
∏m

j=1 yj(−yj)
·

(
m∏

j=1

yj(−yj)

(1− e−yj)(1− eyj)

)2

= (−1)m(m+ 1) td(F̃ ).

Applying the map f ∗∗ and evaluating on the fundamental class of M we obtain the
desired index. The complex tangent bundle T cM of M is isomorphic to the complex
vector bundle F ∗ ∼= F . Therefore, we have proved the following proposition, which is our
first partial result on indices of quaternionic complexes.

Proposition 5.8. Let M be a compact manifold with a GL(m,H)-structure admitting a
torsion-free connection. Then the index of the Salamon’s complex is given by

(−1)m(m+ 1)td(T cM)[M ].

Note that such a manifold is a complex manifold and the number td(T cM)[M ] is the
index of the Dolbeault complex associated to the complex tangent bundle T cM of M . In
particular, it is an integer and thus the above index is an integer divisible by m+ 1.
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We should remark here that by a different method very similar results were obtained in
[6] for a certain class of quaternionic complexes. However, it is not clear to us whether the
Salamon’s complex is included in that class.

6. Quaternionic structures

In this section we will look more closely at some topological properties behind quater-
nionic structures. In particular, there are naturally defined characteristic classes for these
structures, which will enable us to describe the rational cohomology ring of the classifying
space BSp(1)Sp(m). Once we have done this, we will be able to compute the indices of
quaternionc complexes we are interested in. The basic source for the notions and construc-
tions presented here is [9].

Throughout the section, X will denote a compact Hausdorff topological space.

Definition 6.1. Let β be an oriented real 3-dimensional vector bundle over X with a
positive-definite inner product 〈−,−〉. Then we define a bundle of quaternion algebras
Hβ = R⊕ β with the multiplication given by

(s, u) · (t, v) = (st− 〈u, v〉, sv + tu+ u× v).

Equivalently, if P → X is the principal SO(3) = Aut(H)-bundle corresponding to β, then

Hβ = P ×Aut(H) H and β = P ×SO(3) R3

The definition says that fibrewise the bundle Hβ carries a structure of the algebra of
quaternions, but globally it may not be the product bundle X ×H.

Definition 6.2. Let V → X be a real vector bundle. We say that V is a right Hβ-bundle
if it admits a right Hβ-module structure, i.e. there is a bundle map V ⊗R Hβ → V that
restricts to an H-module structure in each fibre.

It follows from the definition that the dimension of an Hβ-bundle must be divisible by
four. Moreover, such a bundle can be canonically oriented. Indeed, to orient the fibre Vx,
choose a basis e1, e2, . . . , em of Vx as an (Hβ)x-module and an oriented orthonormal basis
i, j, k of βx. Then e1, e1i, e1j, e1k, . . . , em, emi, emj, emk is the oriented basis of Vx.

These notions are related to the theory of quaternionic manifolds and to our problem of
computing indices of quaternionic complexes by the following statement.

Proposition 6.3 ([9]). A 4m-dimensional real vector bundle V is a right Hβ-bundle for
some oriented 3-dimensional vector bundle β if and only if the structure group of the frame
bundle of V may be reduced to the subgroup Sp(1)Sp(m) ⊂ GL(4m,R).

Proof. If the structure group of the principal frame bundle Fr(V ) reduces to the subgroup
G0 = Sp(1) Sp(m), then V = Fr(V ) ×G0 Hm, here we view Hm as a real vector space.
Put β = Fr(V ) ×G0 im H with the action of G0 on im H being defined as follows: if
(a,A) ∈ Sp(1) × Sp(m) represents an element of G0, then (a,A) · q = aqā. Clearly, β
is an oriented 3-dimensional real vector bundle and the associated quaternion algebra is
Hβ = Fr(V )×G0 H with the same action of G0 as above. But then right multiplication by
quaternions is a G0-map and so it induces a right Hβ-module structure on V .

For the other direction see [9]. �
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The proposition applies, in particular, to the tangent and cotangent bundle of a quater-
nionic manifold M (after introducing a Riemannian metric). We can actually describe the
vector bundle β as follows. Let E be the standard complex Sp(1)-module as in Section
2. By letting Sp(m) act on E trivially, we may view E as a representation of the group
G0 = Sp(1)Sp(m). Now consider the symmetric power S2E and a mapping ϕ : im H → S2E
defined by ϕ(u) = j⊗ u− 1⊗ uj. Then ϕ is a real linear G0-map. Moreover, the real basis
i, j, k of im H is mapped to a complex basis of S2E

i 7→ (1⊗ j + j⊗ 1)i,

j 7→ 1⊗ 1 + j⊗ j,

k 7→ (1⊗ 1− j⊗ j)i.

This implies that the complexification of im H is isomorphic to S2E and, on the vector
bundle level, the complexification of β = P ×G0 im H is isomorphic to S2E, which is a
globally defined vector bundle over M .4

We will proceed to define characteristic classes for Hβ-bundles. Let V → X be a right
Hβ-bundle of quaternionic dimension m, i.e. real dimension 4m. Then one can consider
the associated projective bundle HβP (V ) → X whose fibre over a point x ∈ X is the
space of all quaternionic lines in the fibre Vx in the sense of the Hβ-module structure.
Futhermore, let L = {(`, v) ∈ HβP (V ) × V | v ∈ `} be the canonical Hβ-line bundle over
HβP (V ) oriented as a right Hβ-bundle. The following proposition defines characteristic

classes dβ
j (V ) of the bundle V as coefficients of a certain polynomial over the ringH∗(X; Z).

Proposition 6.4 ([9]). For each right Hβ-bundle V → X of quaternionic dimension m

there are uniquely determined classes dβ
j (V ) ∈ H4j(X; Z), 1 ≤ j ≤ m, such that we have

H∗(HβP (V ); Z) = H∗(X; Z)[t]/(tm − dβ
1 (V )tm−1 + . . .+ (−1)mdβ

m(V )),

where t = e(L) ∈ H4(HβP (V ); Z) is the Euler class of the canonical bundle L.

Proof. The proof goes along as for the Chern classes of complex vector bundles by applying
the Leray-Hirsch theorem, see for example [14]. �

One can show (see [9]) that the cohomology classes dβ
j (V ) have usual properties of

characteristic classes like naturality or multiplicativity, i.e. dβ(V1 ⊕ V2) = dβ(V1)d
β(V2),

where dβ(V ) = 1+dβ
1 (V )+dβ

2 (V )+ . . .+dβ
m(V ). In particular, there is a splitting principle

for Hβ-bundles.

Proposition 6.5 ([9]). For each Hβ-bundle V → X there is a fibre bundle p : F (V ) → X
such that the pullback p∗V splits into a direct sum of Hβ-line bundles and, moreover, the
induced map p∗ : H∗(X; Z) → H∗(F (V ); Z) is injective.

Proof. The proof is again classical as for the Chern classes, see [14]. �

The splitting principle implies that in calculations with the classes dβ
j (V ) we may for-

mally assume that there are cohomology classes y1, y2, . . . , ym ∈ H4(X; Z) such that dβ
j (V )

is the j-th elementary symmetric polynomial in the yk’s or, in short, dβ(V ) =
∏m

k=1(1+yk).

4Compare with ([22], page 146).
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The following proposition shows that our classes determine other characteristic classes
of V as a real vector bundle. This will be technically very useful.

Proposition 6.6 ([9]). Let V be a canonically oriented right Hβ-bundle of quaternionic
dimension m, i.e. of real dimension 4m.

(a) The Euler class e(V ) of V equals the top-dimensional class dβ
m(V ).

(b) The rational Pontryagin classes of V are given by

1 + p1(V ) + p2(V ) + . . .+ p2m(V ) =
m∏

j=1

((1 + yj)
2 + p1(β)),

where dβ(V ) =
∏m

j=1(1 + yj).

Proof. See [9], but note that we deal with right Hβ-bundles rather then left ones. �

The final point of this section is the rational cohomology ring of the classifying space
BG0 of the group G0 = Sp(1)Sp(m). Let EG0 be the universal principal G0-bundle and put

β = EG0 ×G0 im H and Ṽ = EG0 ×G0 R4m. Furthermore, write q1 for the first Pontryagin

class p1(β) of β and dj for the characteristic classes dβ
j (Ṽ ).

Proposition 6.7 ([9]). The rational cohomology ring of BSp(1)Sp(m) is given by

H∗(BSp(1)Sp(m); Q) ∼= Q[q1, d1, d2, . . . , dm].

Proof. One can obtain this from the description of the integral cohomology ring of the
classifying space BSp(1)Sp(m), which was done in [9]. �

According to Proposition 6.6 the Euler class e(Ṽ ) equals the class dm, which is a gener-
ator of the cohomology ring and so it is nonzero. Hence we have verified the condition of
Proposition 5.4 and may now proceed to calculations.

7. The computations

In this last section we will describe a procedure how to compute the indices of the
quaternionic complexes from Theorem 2.11 and illustrate it on some examples.

Let M be a compact 4m-dimensional quaternionic manifold. By introducing a Riemann-
ian metric on M we may reduce the structure group of the principal frame bundle of M
to the subgroup G0 = Sp(1)Sp(m). Let P be the corresponding principal G0-bundle and

f : M → BG0 the classifying map of P . Put W̃ j
k = EG0 ×G0 Wj

k and Ṽ = EG0 ×G0 R4m.
Then by Proposition 5.4 the index of the D0,1-complex Dk associated to the representation
Wk from Theorem 2.11 is given by

(7.1) indDk =

{
f ∗∗

(∑2m
j=0(−1)j ch W̃ j

k

e(Ṽ )

)
· td(TM ⊗ C)

}
[M ].

To evaluate this formula we will have to solve the equation

(7.2) x ∪ e(Ṽ ) =
2m∑
j=0

(−1)j ch W̃ j
k
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in the ring H∗∗(BG0; Q) to determine the fraction above. This problem can be simplified
it two ways. First, because the cohomology groups of the compact manifold M are zero
from dimension 4m+ 1, it suffices to compute x up to dimension 4m. Secondly, if BG1 is
the classifying space of the group G1 = Sp(1) × Sp(m) and π : G1 → G0 the projection,
then the induced map (Bπ)∗ : H∗(BG0; Q) → H∗(BG1; Q) is an isomorphism. Therefore,
we may pull back the equation (7.2) to BG1 and solve it in H∗(BG1; Q).

Let again E and F denote the standard complex Sp(1)-module and Sp(m)-module, re-
spectively. By letting the other factor of G1 = Sp(1) × Sp(m) act trivially, we may view

these modules as representations of G1. Put Ẽ = EG1 ×G1 E and F̃ = EG1 ×G1 F. Then
these are globally defined vector bundles over BG1 and we have

(7.3) (Bπ)∗(Ṽ ⊗R C) ∼= Ẽ ⊗C F̃

as in Section 2. Moreover, if β = EG0×G0 im H, then the real vector bundle Ṽ1 = (Bπ)∗(Ṽ )
is a right Hβ1-bundle for β1 = (Bπ)∗(β). Similarly as in the preceding section we get

β1 ⊗ C ∼= S2Ẽ and so for the first Pontryagin class of β1 we have

(7.4) p1(β1) = −c2(S2Ẽ) = −4c2(Ẽ).

The second equality will be proved later.
From the isomorphism (7.3) we obtain

4m+ p1(Ṽ1) +
1

12
p1(Ṽ1)

2 − 1

6
p2(Ṽ1) + . . . = ch(Ṽ1 ⊗ C) = ch(Ẽ) ch(F̃ ) =

=

(
2 + c1(Ẽ) +

1

2
c1(Ẽ)2 − c2(Ẽ) + . . .

)(
2m+ c1(F̃ ) +

1

2
c1(F̃ )2 − c2(F̃ ) . . .

)
.

By comparing inductively the two sides of this equality we may write the Pontryagin classes

of Ṽ1 as polynomials in the Chern classes of Ẽ and F̃ . This implies together with (7.4) and
Proposition 6.6 that we are able to translate between three sets of characteristic classes –

the Chern classes of Ẽ and F̃ , the Pontryagin classes of Ṽ1 and β1 and the quaternionic

classes dβ1

1 (Ṽ1), d
β1

2 (Ṽ1), . . . , d
β1
m (Ṽ1) and p1(β1).

Now return to the equation (7.2) in the pulled back version, i.e.

(7.5) (Bπ)∗(x) ∪ e(Ṽ1) =
2m∑
j=0

(−1)j ch(Bπ)∗(W̃ j
k ).

To solve this equation we have to compute first the Chern characters in terms of the Chern

classes of Ẽ and F̃ and then express these in the dβ1

l -classes. Afterwards, we divide by the

Euler class e(Ṽ1) = dβ1
m (Ṽ1) to obtain the solution (Bπ)∗(x) ∈ H∗(BG1; Q), which can be

sent back to H∗(BG0; Q).

Let us focus on the bundles (Bπ)∗(W̃ j
k ) = EG1 ×G1 Wj

k. We know from (2.10) that

(Bπ)∗(W̃ j
k ) ∼= Sj+kẼ ⊗ (ΛjF̃ ⊗ SkF̃ ∗)0 for j < 2m, (Bπ)∗(W̃ 2m

k ) = S2(m+k)Ẽ ⊗ Λ2mF̃ .

The factors in the tensor products are globally defined vector bundles and so to compute

the Chern character of (Bπ)∗(W̃ j
k ) it suffices to compute the Chern characters of the factors.

We will apply Proposition 3.2. As a maximal torus S of G1 = Sp(1) × Sp(m) take the
product of the standard maximal tori of Sp(1) and Sp(m) – the standard maximal torus
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of Sp(1) is the set of complex units exp(2πix) and the standard maximal torus of Sp(m) is
the set of diagonal matrices with entries exp(2πixl), where xl ∈ R. Then x, x1, x2, . . . , xm

viewed as linear forms on the Lie algebra s constitute a basis of integral weights.

Consider first the complex vector bundle Ẽ = EG1×G1E. The inducing representation of
this bundle is λ : G1 = Sp(1)× Sp(m) → U(E) ∼= U(2), the projection onto the first factor
composed with the standard representation of Sp(1) on E. An element of the maximal
torus S is mapped to a diagonal matrix of the form(

exp(2πix) 0
0 exp(−2πix)

)
and so the weights of λ are the forms ±x. Then the Chern classes of Ẽ are given by5

c(Ẽ) = (1 + y)(1− y) ⇒ c1(Ẽ) = 0, c2(Ẽ) = −y2.

The Chern classes of the symmetric powers SjẼ are now easy to compute. The map λ is
again the projection onto the first factor of G1 composed with the standard representation
of Sp(1) on SjE. If e1, e2 is the canonical basis of E, then the symmetric products ek1

1 e
k2
2 ,

k1 + k2 = j form a basis of SjE and the action of an element s = exp(2πix) ∈ S of the
maximal torus of G1 is given by

λ(s)(ek1
1 e

k2
2 ) = exp[(2πi)(k1 − k2)x] · ek1

1 e
k2
2 .

Therefore, the weights of λ are the forms (k1 − k2)x, k1 + k2 = j, and we have

c(SjẼ) =
∏

k1+k2=j

(1 + (k1 − k2)y).

We see from this that the Chern classes of SjẼ can be written as polynomials in c2(Ẽ).
In particular, setting j = 2 we obtain

c(S2Ẽ) = (1 + 2y)(1− 2y) = 1− 4y2 = 1 + 4c2(Ẽ),

which proves the second equality in (7.4).

Now turn to the vector bundle F̃ . The inducing representation λ : G1 → U(F) ∼= U(2m)
is the projection onto the second factor composed with the standard representation of
Sp(m) on F. If e1, e2, . . . , e2m−1, e2m is the canonical basis of F, then the action of an
element s ∈ S of the maximal torus of G1 is given by

λ(s)(e2l) = exp(2πixl) · e2l, λ(s)(e2l+1) = exp(−2πixl) · e2l+1.

It follows that the weights of λ are ±xl, 1 ≤ l ≤ m, and then the total Chern class of F̃ is

c(F̃ ) =
m∏

l=1

(1 + yl)(1− yl) =
m∏

l=1

(1− y2
l ).

The Chern classes of the exterior powers ΛjF̃ may be obtained as follows. In this case
the representation λ is the projection onto the second factor of G1 composed with the
standard representation of Sp(m) on ΛjF. If we put x′2l = xl and x′2l+1 = −xl, 0 ≤ l ≤ m,

5As before, y stands for the transgression of x and yl will stand for the transgressions of xl. Moreover,
we omit the map η∗ according to the paragraph following Proposition 3.2.
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then the weights of λ are the sums x′l1 + x′l2 + . . .+ x′lj , where 1 ≤ l1 < l2 < . . . < lj ≤ 2m

(see Example 3.3). The total Chern class of ΛjF̃ is then given by

c(ΛjF̃ ) =
∏

1≤l1<...<lj≤2m

(1 + y′l1 + . . .+ y′lj).

Substituting back y′2l = yl and y′2l+1 = −yl we obtain an expression symmetric in −y2
l and

so it can be written as a polynomial in the Chern classes of F̃ .

The computation of the Chern classes of (ΛjF̃ ⊗ SkF̃ ∗)0 for k > 0 is much more com-
plicated. The representation λ is given by the projection onto the first factor followed by
the action of Sp(m) on (ΛjF⊗SkF∗)0. However, Vj

k = (ΛjF⊗SkF∗)0 is defined as a repre-
sentation of the group U(2m) corresponding to a maximal weight and we have to find its
weights with respect to the subgroup Sp(m) ⊂ U(2m). This can be done as follows. First,
the character ring of complex representations of the group SU(2m) differs from that of
the group U(2m) only by a one-dimensional determinantal representation on which Sp(m)
acts trivially. Therefore, there is nothing lost in assuming that Vj

k is a representation of
SU(2m). But SU(2m) is compact and simply connected and so its representation theory is
equivalent to that of the complex Lie algebra sl(2m,C). In particular, there are algorithms
for computing all the weights of Vj

k if we know its maximal weight.6 This maximal weight
is by definition the sum of the maximal weight of ΛjF and the maximal weight of SkF∗

and these are easy to find – if z1, z2, . . . , z2m are the standard integral weights for SU(2m),
then the maximal weight of ΛjF is z1 + z2 + . . .+ zj while the maximal weight of SkF∗ is

−k · z2m. The weights of Vj
k then will be integral linear combinations of the zl’s. To obtain

the weights of Vj
k as a representation of Sp(m) we only have to substitute z2l = xl and

z2l+1 = −xl for 1 ≤ l ≤ m – this can be seen from the definition of the standard inclusion
Sp(m) ⊂ SU(2m). Finally, once we know the weights, we may compute the total Chern
class c(Vj

k), which will be an expression symmetric in −y2
l . Indeed, the set of weights of

a representation is invariant under the action of the Weyl group and the Weyl group of
SU(2m) is the symmetry group on the set {z1, y2, . . . , z2m}. Therefore, c(Vj

k) can be again

expressed as a polynomial in the Chern classes of F̃ .

To conclude, we have seen that the Chern classes of Sj+kẼ and (ΛjF̃ ⊗ SkF̃ ∗)0 can be

written as polynomials in the Chern classes of Ẽ and F̃ , respectively. Then this is also

true for the Chern characters of these bundles and the bundle (Bπ)∗(W̃ j
k ). The right-hand

side of (7.5) is thus a polynomial in the Chern classes of Ẽ and F̃ and so can be expressed

in terms of the quaternionic classes dβ1

l (Ṽ1). The result will be a multiple of the Euler class

e(Ṽ1) = dβ1
m (Ṽ1). Dividing by e(Ṽ1), we obtain the solution (Bπ)∗(x) ∈ H∗(BG1; Q). To

get x ∈ H∗(BG0; Q), it suffices to write dβ
l (Ṽ ) and p1(β) instead of dβ1

l (Ṽ1) and p1(β1).
The computation is almost finished. Recall that x was the fraction in (7.1). If we express

x in terms of the Pontryagin classes of Ṽ and p1(β), then f ∗∗(x) will be a polynomial in the
Pontryagin classes of TM and the class p1(f

∗β). Note that Hf∗β is the bundle of quaternion
algebras corresponding to the G0-structure P on M . The final step is to multiply with

6We have used the computer algebra system LiE [24].
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the Todd class td(TM ⊗ C) and evaluate the top-dimensional part of the product on the
fundamental class [M ] of M .

We will go through the computation in the easiest case of the Salamon’s complex on an
8-dimensional quaternionic manifold, i.e. m = 2 and k = 0.

Example 7.6. Let M be a compact quaternionic manifold M of dimension 8 and consider
the Salamon’s complex (2.3). We have to deal with the vector bundles

(Bπ)∗(W̃ j
0 ) = SjẼ ⊗ ΛjF̃ , 0 ≤ j ≤ 4.

For simplicity we make the following notation

pj(Ṽ1) = pj for 1 ≤ j ≤ 4, p1(β1) = q1, dβ1

1 (Ṽ1) = d1, dβ1

2 (Ṽ1) = d2,

c2(Ẽ) = a2, c2(F̃ ) = b2, c4(F̃ ) = b4.

Note that we have seen that the odd-dimensional Chern classes of Ẽ and F̃ are zero.
1. The first preliminary step of the computation is to write out the relations between the
above characteristic classes. By Proposition 6.6 we have

1 + p1 + p2 + p3 + p4 = [(1 + y1)
2 + q1][(1 + y2)

2 + q1],

where d1 = y1 + y2 and d2 = y1y2. Expanding the right-hand side we obtain

p1 = 2d1 + 2q1, p2 = d2
1 + 2d1q1 + 2d2 + q2

1, p3 = d2
1q1 + 2d1d2 − 2d2q1, p4 = d2

2,

d1 =
1

2
p1 − q1, d2 = −1

8
p2

1 +
1

2
p2.

Furthermore, the equality ch(Ṽ1 ⊗ C) = ch(Ẽ) ch(F̃ ) reads as

8 + p1 +
1

12
p2

1 −
1

6
p2 + . . . =

(
2− a2 +

1

12
a2

2 + . . .

)(
4− b2 +

1

12
b22 −

1

6
b4 + . . .

)
and so for the Pontryagin classes we have

p1 = −4a2 − 2b2, p2 = 6a2
2 + 2a2b2 + b22 + 2b4.

Finally, comparing this with the equalities above and from (7.4), we obtain

q1 = −4a2, d1 = 2a2 − b2, d2 = a2
2 − a2b2 + b4,

a2 = −1

4
q1, b2 = −d1 −

1

2
q1, b4 =

1

4
d1q1 + d2 +

1

16
q2
1.

2. Now we will compute the Chern classes of the symmetric powers SjẼ and the exterior

powers ΛjF̃ in terms of the Chern classes of Ẽ and F̃ . First, we know that

c(Ẽ) = (1 + y)(1− y) = 1− y2 ⇒ a2 = −y2.

Then one easily obtains

c(S2Ẽ) = (1 + 2y)(1− 2y) = 1− 4y2 = 1 + 4a2,

c(S3Ẽ) = (1 + 3y)(1 + y)(1− y)(1− 3y) = 1− 10y2 + 9y4 = 1 + 10a2
2 + 9a4

2,

c(S4Ẽ) = (1 + 4y)(1 + 2y)(1− 2y)(1− 4y) = 1− 20y2 + 64y4 = 1 + 20a2
2 + 64a4

2.
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Similarly, for the vector bundle F̃ we have

c(F̃ ) = (1 + y1)(1− y1)(1 + y2)(1− y2) = 1− y2
1 − y2

2 + y2
1y

2
2 ⇒ b2 = −y2

1 − y2
2, b4 = y2

1y
2
2

and therefore

c(Λ2F̃ ) = (1− y1 + y2)(1− y1 − y2)(1 + y1 + y2)(1 + y1 − y2) =

= 1− 2y2
1 − 2y2

2 + y4
1 − 2y2

1y
2
2 + y4

2 = 1 + 2b2 + b42 − 4b4,

c(Λ3F̃ ) = (1 + y2)(1− y2)(1 + y1)(1− y1) = 1 + b2 + b4,

c(Λ4F̃ ) = 1.

3. Having computed the Chern classes of SjẼ and ΛjF̃ we may evaluate the right-hand side

of (7.5), i.e. the alternating sum
∑4

j=0(−1)j ch(Bπ)∗(W̃ j
0 ) =

∑4
j=0(−1)j ch(SjẼ) ch(ΛjF̃ ).

It suffices to compute the Chern characters up to dimension 16, because once we divide
by the Euler class, the dimension decreases to 8, which is exactly the dimension of the
manifold M . Unfortunately, these calculations are not so easy to handle and so we have
used the computer algebra system Maple. The result is the following formula

4∑
j=0

(−1)j ch(Bπ)∗(W̃ j
0 ) = 3a2

2 − 3a2b2 + 3b4 −
9

2
a3

2 +
17

4
a2

2b2 +
1

4
a2b

2
2 −

9

2
a2b4 −

1

4
b2b4+

+
163

80
a4

2 −
67

40
a3

2b2 −
17

48
a2

2b
2
2 +

49

24
a2

2b4 −
1

120
a2b

3
2 +

43

120
a2b2b4 +

1

120
b22b4 +

1

240
b24.

4. The next step is to express the formula in terms of the classes d1, d2 and q1. As we
know, we should get a multiple of the class d2. Really, we have

4∑
j=0

(−1)j ch(Bπ)∗(W̃ j
0 ) = 3d2 +

1

4
d1d2 +

5

4
d2q1 +

1

120
d2

1d2 +
1

10
d1d2q1 +

1

240
d2

2 +
7

40
d2q

2
1.

Now we divide by the Euler class e(Ṽ1) = d2 to obtain the solution of the equation (7.5)
and then express this in terms of the Pontryagin classes

(Bπ)∗(x) = 3 +
1

4
d1 +

5

4
q1 +

1

120
d2

1 +
1

10
d1q1 +

1

240
d2 +

7

40
q2
1 =

= 3 +
1

8
p1 + q1 +

1

640
p2

1 +
1

24
p1q1 +

1

480
p2 +

1

12
q2
1.

5. Finally, we have to pull back the solution x to the manifold M and multiply by the
Todd class td(TM ⊗ C). The formulas for these two classes are

f ∗(x) = 3 +
1

8
p1(TM) + p1(f

∗β) +
1

640
p1(TM)2 +

1

24
p1(TM)p1(f

∗β)+

+
1

480
p2(TM) +

1

12
p1(f

∗β)2,

td(TM ⊗ C) = 1− 1

12
p1(TM) +

1

240
p1(TM)2 − 1

720
p2(TM).
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The index of the Salamon’s complex is then given by evaluating the top-dimensional part
of the product f ∗(x) · td(TM ⊗ C) on the fundamental class [M ]. Hence,

indD0 =

(
7

1920
p1(TM)2 − 1

24
p1(TM)p1(f

∗β)− 1

480
p2(TM) +

1

12
p1(f

∗β)2

)
[M ]

and this is the desired result of the computation.

Note that the formula depends on the G0-structure on M via the characteristic class
p1(f

∗β). This class may be also expressed without any reference to the classifying map f .

Indeed, we know that β ⊗ C ∼= S2Ẽ, where S2Ẽ is now viewed as a vector bundle over
BG0. But then f ∗(β ⊗C) ∼= S2E is a globally defined complex vector bundle over M and

p1(f
∗β) = −c2(f ∗(β ⊗ C)) = −c2(S2E).

In general, the basic computational problem is to find the weights of the representations
(ΛjF ⊗ SkF∗)0 and then process these to obtain the Chern classes of the vector bundles

(ΛjF̃ ⊗SkF̃ ∗)0. As was said before, one can make use of computer algebra systems such as
LiE (see [24]) and Maple. We have carried out some calculations for 8 and 12-dimensional
manifolds arriving at the following formulas.

Theorem 7.7. Let M be an 8-dimensional compact quaternionic manifold. If we write
p1 = p1(TM), p2 = p2(TM) and q1 = −c2(S2E), then we have

indD0 =

(
7

1920
p2

1 −
1

24
p1q1 −

1

480
p2 +

1

12
q2
1

)
[M ],

indD1 =

(
209

1920
p2

1 +
11

24
p1q1 −

167

480
p2 +

25

12
q2
1

)
[M ].

Theorem 7.8. Let M be a 12-dimensional compact quaternionic manifold. If we write
p1 = p1(TM), p2 = p2(TM), p3 = p3(TM) and q1 = −c2(S2E), then we have

indD0 =

(
31

241920
p3

1 −
7

2304
p2

1q1 −
11

60480
p1p2 +

41

2304
p1q

2
1+

+
1

576
p2q1 +

1

15120
p3 −

73

2304
q3
1

)
[M ],

indD1 =

(
− 1

6720
p3

1 −
77

576
p2

1q1 +
1

280
p1p2 −

35

576
p1q

2
1 +

7

18
p2q1 −

17

840
p3 −

623

576
q3
1

)
[M ].

As an example we will evaluate the formulas for the quaternionic projective space and
verify that the result is really an integer.

Example 7.9. Consider the quaternionic projective space HPm. In this case the bundles
E and F from (2.2) exist globally and E is precisely the tautological line bundle. The
cohomology ring H∗(HPm; Z) is generated by the class u = −c2(E), which also satisfies
(um) [HPm] = 1. Furthermore, one can show (see [8]) that the Pontryagin classes of THPm

are given by

p(THPm) = (1 + u)2m+2(1 + 4u)−1,
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where (1 + 4u)−1 is the inverse formal power series to 1 + 4u. Finally, according to (7.4)
we have q1 = −4c2(E) = 4u.

Let now m = 2. Then the Pontryagin classes are p1(THP2) = 2u and p2(THP2) = 7u2

and we may evaluate the two formulas from above

indD0 =

(
7

1920
4u2 − 1

24
8u2 − 1

480
7u2 +

1

12
16u2

)
[HP2] = (u2) [HP2] = 1,

indD1 =

(
209

1920
4u2 +

11

24
8u2 − 167

480
7u2 +

25

12
16u2

)
[HP2] = (35u2)[HP2] = 35.

Similarly, for m = 3 we have p1(THP3) = 4u, p2(THP3) = 12u2, p3(THP3) = 8u3 and

indD0 =

(
31

241920
64u3 − 7

2304
64u3 − 11

60480
48u3 +

41

2304
64u3+

+
1

576
48u3 +

1

15120
8u3 − 73

2304
64u3

)
[HP3] = (−u3)[HP3] = −1,

indD1 =

(
− 1

6720
64u3 − 77

576
64u3 +

1

280
48u3 − 35

576
64u3+

+
7

18
48u3 − 17

840
8u3 − 623

576
64u3

)
[HP3] = (−63u3)[HP3] = −63.

The drawback of the index formulas is that they depend on the class q1, which is not easy
to compute. By taking integral linear combinations of the formulas we may try to eliminate
the terms containing q1 and so obtain some integrality conditions on the Pontryagin classes
of the manifold. Consider for example the formulas from Theorem 7.7. We have

11 · indD0 + indD1 =

(
143

960
p2

1 −
89

240
p2 + 3q2

1

)
[M ],

50 · indD0 − 2 · indD1 =

(
− 17

480
p2

1 − 3p1q1 +
71

120
p2

)
[M ].

Recall that p1 and q1 are Pontryagin classes of some vector bundles and so they belong to
the integral cohomology groups. In particular, evaluating p1q1 and q2

1 on the fundamental
class of M we get an integer. But then by evaluating the rest of the above formulas we
must again obtain an integer (and not only a rational number).

Corollary 7.10. Let M be an 8-dimensional compact quaternionic manifold. Then the
following expressions are integers(

143

960
p2

1 −
89

240
p2

)
[M ],

(
− 17

480
p2

1 +
71

120
p2

)
[M ].

Of course we can deal with many other integral linear combinations a · indD0 +b · indD1.
The requirement is that the coefficients of the terms containing q1 will be integers. This
will hold true if and only if

−a+ 11b ≡ 0 mod 24, a+ 25b ≡ 0 mod 12.
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The second congruence is a consequence of the first and so for each solution

(a = 11b+ 24k, b), b, k ∈ Z

of the first congruence we obtain another integrality conditions on the Pontryagin classes
of the manifold.

Finally, we will look more closely on manifolds admitting a GL(m,H)-structure with a
torsion-free connection as in Example 5.6. In this case the formulas simplify considerably
because the vector bundle E is trivial and so q1 = 0. Furthermore, the complex tangent
bundle T cM of M is isomorphic to the vector bundle F up to the orientation.

Suppose that m = 2. Then the orientations coincide and as in Example 7.6 we may
compute that p1(TM) = −2c2(F ) and p2(TM) = c2(F )2 + 2c4(E). Now substitute to the
first formula from Theorem 7.7

indD0 =

(
7

1920
4c2(F )2 − 1

480

(
c2(F )2 + 2c4(F )

))
[M ] =

(
1

80
c2(F )2 − 1

240
c4(F )

)
[M ].

The Todd class of F is given by

td(F ) = 1 +
1

12
c2(F ) +

1

240
c2(F )2 − 1

720
c4(F ).

In particular, three times the top dimensional part equals 1
80
c2(F )2 − 1

240
c4(F ), which

verifies that our general formula for the Salamon’s complex from Theorem 7.7 coincides
with the formula in Proposition 5.8.

Let us do the same for the second index formula from Theorem 7.7, i.e.

indD1 =

(
209

1920
4c2(F )2 − 167

480

(
c2(F )2 + 2c4(F )

))
[M ] =

(
7

80
c2(F )2 − 167

240
c4(F )

)
[M ] =

= 21

(
1

240
c2(F )2 − 1

720
c4

)
[M ]− 2

3
c4(F )[M ] = 21 td(T cM)[M ]− 2

3
χ(M).

The last equality follows from the facts that td(F ) = td(T cM) and c4(F ) = e(TM), the
Euler class. Recall that the number td(T cM)[M ] must be an integer because it is the index
of the Dolbeault complex on M , see [5]. Since the index indD1 is also an integer, this
implies that the Euler characteristic must be divisible by 3.

Corollary 7.11. Let M be an 8-dimensional compact manifold with a GL(2,H)-structure
admitting a torsion-free connection. Then its Euler characteristic χ(M) is divisible by 3.

This result is well-known for compact hyperkähler manifolds. More precisely, if M is a
compact 4m-dimensional hyperkähler manifold, then 24 divides m · χ(M) (see [21]).

Appendix A. The Chern character and the Todd class

In this short appendix we will look more closely at the Chern character and the Todd
class and how these can be expressed as power series in the Chern classes of the bundle.

Let p : E → X be an n-dimensional complex vector bundle. It follows from the definition
of the total Chern class given in Section 3 that we may formally write c(E) =

∏n
j=1(1+yj)

for some 2-dimensional cohomology classes yj. Then the k-th Chern class ck(E) is precisely

37



the k-th elementary symmetric polynomial in the yj’s. Furthermore, the Chern character
ch(E) was defined as follows

ch(E) =
∞∑

j=0

1

j!
(yj

1 + . . .+ yj
n).

But the summands of this power series are symmetric in the yj’s and so, according to
the fundamental theorem on symmetric polynomials, they can be uniquely written as
polynomials in the elementary symmetric polynomials, i.e. the Chern classes ck(E).

Let t1, t2, . . . , tn be indeterminates and σ1, σ2, . . . , σn the elementary symmetric polyno-
mials in these indeterminates. The symmetric polynomial sj, called a Newton polynomial,

such that tj1 + tj2 + . . .+ tjn = sj(σ1, σ2, . . . , σn) can be computed recursively by the formula

sj = σ1sj−1 − σ2sj−2 + . . .+ (−1)j−2σj−1s1 + (−1)jjσj.

Hence, we have for example

s1 = σ1, s2 = σ2
1 − σ2, s3 = σ3

1 − 3σ1σ2 + 3σ3, s4 = σ4
1 − 4σ2

1σ2 + 4σ1σ3 + 2σ2
2 − 4σ4

and the Chern character may be written as

ch(E) = dimE + c1(E) +
1

2

(
c1(E)2 − 2c2(E)

)
+

1

6

(
c1(E)3 − 3c1(E)c2(E) + 3c3(E)

)
+ . . .

Similarly, the Todd class was defined by

td(E) =
n∏

j=1

yj

1− e−yj
,

which is a power series symmetric in the yj’s. Therefore, it may be again expressed as a
power series in the Chern classes of the vector bundle E. However, in this case there is no
recursive formula as above and so the summands must be computed directly. If we write
td = 1 + td1(c1, . . . , cn) + td2(c1, . . . , cn) + . . ., then for example (see [15])

td1 =
1

2
c1, td2 =

1

12
(c21 + c2), td3 =

1

24
c1c2,

td4 =
1

720
(−c41 + 4c21c2 + c1c3 + 3c22 − c4), td5 =

1

1440
(−c31c2 + c21c3 + 3c1c

2
2 − c1c4),

td6 =
1

60480
(2c61 − 12c41c2 + 5c31c3 + 11c21c

2
2 − 5c21c4 + 11c1c2c3 − 2c1c5+

+ 10c32 − 9c2c4 − c23 + 2c6).

Let us note finally, that in the thesis we deal mainly with the Todd class of a complexified
real vector bundle V . But then we have c2j(V ⊗C) = (−1)jpj(V ) from the definition of the
Pontryagin classes and, moreover, c2j+1(V ) = 0, j ≥ 0. This is because V ⊗C is isomorphic

to the conjugate bundle V ⊗ C, whose Chern classes are ck(V ⊗ C) = (−1)kck(V ⊗ C).
Therefore, c2j+1(V ⊗ C) = −c2j+1(V ⊗ C), which implies that over the rationals the odd-
dimensional Chern classes are zero.
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[11] A. Čap, J. Slovák, V. Souček, Bernstein-Gelfand-Gelfand sequences, Ann. of Math. 154 (2001), 97-113,
an extended version electronically available at http://www.esi.ac.at.
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